3.3. ЙОДОМЕТРИЯ
Рабочим раствором метода является раствор молекулярного йода I2 в йодиде калия, который увеличивает растворимость йода в воде:
I2 + I− = I3−
трийодид ион
Трийодид-ион является окислителем средней силы, который количественно реагирует со многими восстановителями.
Трийодид-ион и молекулярный йод в окислительно-восстановительных процессах ведут себя аналогично, поэтому при составлении уравнений реакций, пренебрегают присутствием в растворе I3−, рассматривая лишь I2. В основе йодометрического определения лежит полуреакция:
I2 + 2ē → 2I− Еº(I2/2I−) = 0,535В
fэкв(I2) = ½
Раствор йода готовят из навески приблизительной концентрации. Его точную концентрацию можно определить двумя способами: по навеске стандартного вещества оксида мышьяка (III) − способом прямого титрования, или с помощью второго рабочего раствора Nа2S2О3 − способом обратного титрования.
Многие восстановители, такие как тиосульфаты, сульфиды, арсениты и др., титруют стандартным раствором йода. Часто прямое титрование невозможно по причине каталитического ускорения реакции окисления определяемого восстановителя кислородом воздуха. В этом случае прибегают к обратному титрованию: к раствору восстановителя добавляют избыток рабочего раствора йода, а его непрореагировавший остаток титруют вторым рабочим раствором тиосульфата натрия Nа2S2О3.
Сильные окислители определяют заместительным титрованием: к анализируемому раствору добавляют в избытке йодид калия и, если нужно, кислоту. При этом выделяется молекулярный йод в количестве, стехиометричном окислителю. Образовавшийся йод (заместитель) титруют рабочим раствором тиосульфата натрия. Прямое титрование сильных окислителей раствором Nа2S2О3 невозможно из-за образования разнообразных продуктов окисления.
Реакция йода с тиосульфатом имеет широкое применение в йодометрии:
I2 + Nа2S2О3 → 2NаI + Nа2S4О6
Она протекает быстро и стехиометрично при комнатной температуре в слабокислой среде или при рН < 9. При титровании сильнокислых растворов требуется интенсивное перемешивание, чтобы избежать разложения тиосульфата с образованием сернистой кислоты, которая реагирует с йодом, нарушая стехиометричность. В сильнощелочной среде протекают другие побочные реакции:
I2 + 2NаОН → NаIО + NаI + Н2О;
3NаIО → NаIО3 + 2NаI;
Nа2S2О3 + 4I2 + 10NаОН → 2Nа2SО4 + 8NаI + 5Н2О,
которые искажают результаты титрования.
Раствор тиосульфата натрия точно заданной концентрации нельзя приготовить путем растворения навески промышленного препарата Nа2S2О3 ∙ 5Н2О в мерной колбе. Состав препарата не отвечает точно указанной формуле, кроме того, свежеприготовленный раствор нестабилен. Основной причиной изменения его концентрации является деятельность тионовых бактерий, она усиливается при повышенной температуре и освещении. Наряду с этим тиосульфат натрия медленно реагирует с растворенной углекислотой и на свету − с кислородом воздуха:
Nа2S2О3 + Н2О + СО2 → NаНСО3 + NаНSО3 + S↓
2Nа2S2О3 + О2 → 2Nа2SО4 + S↓
Свежеприготовленный раствор тиосульфата натрия стерилизуют добавлением небольших количеств НgI2, хлороформа или амилового спирта, подщелачивают добавлением соды, защищают от света и выдерживают в течение 7-10 дней. Если раствор не стал мутным, то он устойчив и его стандартизуют.
Стандартизацию раствора тиосульфата натрия проводят с помощью стандартного вещества К2Сr2О7. При избытке КI и кислоты бихромат калия замещается стехиометричным количеством молекулярного йода q(К2Сr2О7) = q(I2) , который затем титруют тиосульфатом натрия q(I2) = q(Nа2S2О3) и, следовательно, q(Nа2S2О3) = q(К2Сr2О7).
Реакция замещения протекает медленно, для ее ускорения берут значительный избыток реагентов. Выделившийся йод мало растворим в воде, но при избытке йодид-ионов образуется более растворимое соединение трийдид-ион, понижающий упругость паров йода (его летучесть).
Окраска раствора йода при малой концентрации недостаточно интенсивна для точного определения конца титрования. В качестве чувствительного индикатора применяют свежеприготовленный коллоидный раствор крахмала, который образует с молекулярным йодом адсорбционное соединение интенсивно-синего цвета. При титровании йода тиосульфатом индикатор вводят в конце титрования, когда концентрация йода мала. Адсорбционное соединение, образующееся при большой концентрации йода, медленно реагирует с тиосульфат-ионом и это приводит к повышенному расходу тиосульфата натрия. Стандартный раствор тиосульфата натрия проверяют каждые 1-2 месяца.
... химия не только обеспечила эти области эффективными методами анализа, но и послужила основой разработки многих новых технологических процессов. Основные этапы развития аналитической химии Многие практические приемы аналитической химии и аналитические методики были известны в глубокой древности. Это, прежде всего пробирное искусство, или пробирный анализ, который выполнялся «сухим» путем, т. ...
... соответствует знак (+) на пересечении строки 8 и столбца Ж. Можно дать и более подробную характеристику межпредметных связей - на уровне подразделов и примеров, а также перечни методов и понятий, но в настоящей статье такие детали вряд ли целесообразны. В таблице цифрами обозначены следующие разделы курса АХ: 1 - метрологические основы химического анализа; 2 - теория и практика пробоотбора; 3 - ...
... АНАЛИЗА 4.1. Теории кислотно-основных индикаторов Кроме использования органических соединений для образования металлокомплексов, образования окрашенных соединений органические реагенты используются очень широко в аналитической химии в качестве индикаторов методов кислотно-основного титрования. Индикатор – это вещество, которое проявляет видимое изменение в точке эквивалентности или вблизи ...
... ;à НbО2- + ННb + СО2 Кислотно-основные свойства лигандов, связанных с комплексообразователем, часто выражены более ярко, чем кислотно-основные свойства свободных лигандов. 4. Комплексные соединения в аналитической химии 4.1 Качественный анализ катионов Первая группа катионов В первую аналитическую группу катионов входят ионов калия K+, натрия Na+, аммония NH4+ и магния Mg2+. ...
0 комментариев