Интенсификация перемешивания металла и повышение поверхности контакта расплав - газ

Влияние водорода на свойства стали
Влияние водорода на эксплуатационные свойства стали Определения содержания водорода в металле Процесс неметаллических включений в стали Существующая технологическая схема Материальный баланс плавки стали 17Г1С Период плавки Тепловой баланс рабочего пространства Технология плавки стали марки 17Г1С Доводка чугуна Раскисление и легирование стали Изменение температуры в процессе внепечной обработки металла Специальная часть Основы технологии струйно-кавитационного рафинирования Разработка технологии струйно-кавитационного рафинирования стали в большегрузных ковшах Интенсификация перемешивания металла и повышение поверхности контакта расплав - газ Технические средства для обеспечения пульсирующего дутья Отопление и вентиляция цеха Охрана окружающей природной среды Производственный план Расчет показателей по труду Расчет плановой калькуляции себестоимости
128504
знака
27
таблиц
6
изображений

3.2 Интенсификация перемешивания металла и повышение поверхности контакта расплав - газ

 

Десорбция водорода и азота из жидкой фазы стали протекает на поверхности раздела с газообразной фазой. Такой поверхностью может являться свободная внешняя поверхность жидкого металла (незащищенная шлаком поверхность жидкого металла в вакуум-камере). Процессу десорбции газа с поверхности будет предшествовать перенос растворенных в металле атомов газа в молекулы на этой поверхности. Скорость переноса десорбирующихся молекул газа в объеме газовой фазы исключительно высоко и в промышленных условиях не может влиять на скорость всего процесса в целом. Поэтому процесс десорбции водорода и азота из стали можно представить себе состоящим из двух кинетических стадий:

- поступление растворенных в металле газов из объема металла на границу его раздела с газовой фазой;

- молизации растворенных атомов газа на поверхность раздела и их переход в газовую фазу.

Скорость всего процесса в целом будет лимитировать из кинетических стадий, скорость которой минимальна. Если скорость второй стадии (собственно десорбция молекул газа с поверхности) значительно превышает скорость массопереноса растворенных атомов газа из объема жидкости на внешнюю поверхность, процесс протекает в диффузионной области и описывается уравнением /30/.

(36)

где α – коэффициент скорости массопереноса растворенного вещества, см/с;

F – площадь поверхности раздела газ-металл;

Vмет – объем металла;

(С-Спов) – градиент концентрации, в случае десорбции измеряемый разностью

между средней концентрацией растворенного вещества в объеме

жидкости и на ее поверхности.

После интегрирования получим:

 (37)

где Со – начальная концентрация газа в металле

Концентрация растворенного в поверхностном слое газа, в этом случае, будет приближаться к равновесному с его парциальным давлением в газовой фазе, и при значительном разрежении она стремится к нулю, отсюда

(38)

При относительно больших значениях удельной поверхности процесс дегазации протекает в диффузионной области и контролируется скоростью массопереноса в объем жидкого металла. Поэтому скорость дегазации металла в вакууме будет определяться интенсивностью его перемешивания, т.е. величиной коэффициента скорости массопереноса α,, и удельной поверхностью металла.

Процесс дегазации стали имеет колебательную природу и характеризуются собственной частотой. Протекание этого процесса можно ускорить или замедлить, т.е. изменять в желательном направлении, а следовательно, управлять технологическими режимами и повысить эффект дегазации стали путем введения в резонанс желательных процессов. Реальным способом передачи расплаву в ковше колебаний с заданным набором частот является продувка его пульсирующим (нестационарным) потоком газа, вместо используемого в настоящее время в практике непрерывного дутья.

Пульсации газового потока вызывают колебания пузыря, когда последний периодически изменяет свою форму от сферической к эллипсоидной и обратно.

В результате этих колебаний увеличивается площадь межфазной границы газ-металл, что позволяет ускорить протекающие в нем процессы, к которым относится и дегазация металла. Следовательно, повышение эффективности дегазации стали в процессе продувки ее пульсирующим потоком инертного газа при внепечной обработке обусловлено в основном увеличением поверхности контакта газ-расплав, которое вызвано колебанием газовых пузырьков и диспергированием струи продуваемой газом на пузырьки меньшего размера.

Другой важной особенностью является то, что при пульсирующем режиме продувки газовые пузырьки поднимаются в ковше более широким фронтом и распределены по сечению ковша более равномерно /15/.

Увеличение площади поверхности раздела фаз при пульсирующей продувке существенно зависит от природы жидкости, ибо при продувке спиртов увеличение ее незначительно, в то время как при продувке ртути поверхность пузырей увеличивается в 1,7 раза (частота колебания 3,5 кГц).

Параметром, определяющим склонность жидкости к образованию пузырей, служит критический радиус с пузыря, при котором наступает его деление /31/.

 (38)

где δ – поверхностное натяжение расплава

u – скорость всплывания пузыря

ρ, ρг – плотности жидкости и газа соответственно

Кf – числовой коэффициент.

Постановка величины возрастания поверхности раздела фаз при частоте пульсации 3,5 кГц в соответствии со значением критического радиуса пузыря для данной жидкости описывается уравнением /32/

 (39)

Найдем акр для железа

Соответственно:

- ртути акр = 2,5 см;

- для изоамилового спирта акр = 0,8 см;

- для этилового спирта акр = 0,75 см.

Величина возрастания поверхности раздела при частоте пульсации 600 Гц

Рисунок 3 – Зависимость относительного увеличения поверхности раздела газ – металл от размера устойчивого в данной жидкости пузыря

Таким образом экстраполяция полученных для различных жидкостей данных по зависимости относительной поверхности контакта продуваемого газа и жидкости от частоты пульсации газового потока на железо-углеродистый расплав показала, что продувка его пульсирующим потоком аргона с частотой 3,5 кГц увеличивает общую поверхность газовых пузырей в 2,5 раза, т.е. позволяет значительно ускорить процессы дегазации стали при ковшевой обработке.


Информация о работе «Влияние водорода на свойства стали»
Раздел: Промышленность, производство
Количество знаков с пробелами: 128504
Количество таблиц: 27
Количество изображений: 6

Похожие работы

Скачать
8763
0
7

... стали даже при незначительном изменении его содержания. Т.о., углерод является основным элементом, при помощи которого изменяются свойства сплава на основе железа.   2. Влияние углерода на свойства стали С изменением содержания углерода изменяется структура стали. В зависимости от содержания углерода она может иметь следующий вид: < 0,8% C – Ф+П 0,81% C – П (100%) > 0,81% C – П + ...

Скачать
188739
34
14

... Фк = 365 × 24 = 8760 ч Номинальный фонд времени – это количество часов в году в соответствии с режимом работы без учета потерь. Так как термическое отделение высокотемпературного отжига анизотропной электротехнической стали работает непрерывно, то номинальный фонд равен полному календарному, то есть Фн = Фк = 8760 ч. Действительный фонд времени равен тому времени, которое может быть ...

Скачать
128170
37
0

... технический университет Физико -технологический факультет Кафедра физического металловедения Курсовой проект Тема: “ Проект термического отделения для обезуглероживающего и рекристаллизационного отжига изотропной электротехнической стали третьей группы легирования в толщине 0,5 мм в условиях ЛПЦ-5 АО НЛМК. Годовая программа 120000 тонн Выполнила ст. гр. МТ-94-1 Кузнецова Е. В. ...

Скачать
38447
0
10

... высокой поверхностной твердости используют закалку ТВЧ (шестерни, коленчатые валы, поршневые пальцы и т.д.). Для получения высоких механических свойств в деталях сечением более 25–30 мм применяют легированные стали, которые обладают большей прокаливаемостью, более мелким зерном, их критическая скорость закалки меньше, следовательно, меньше закалочные напряжения, выше устойчивость против отпуска. ...

0 комментариев


Наверх