1.3 Определения содержания водорода в металле
Определение содержания водорода в сталях связано со значительными трудностями. Водород обладает высокой диффузионной подвижностью в твердом металла при повышенных температурах, что требует проведения закалки отобранных проб для фиксации в них растворенного водорода до момента проведения анализа и скорейшего проведения самого анализа. Одним из главных источников ошибок при определении содержания водорода являются его потери при кристаллизации пробы, когда происходит скачкообразное изменение его растворимости.
Методы отбора проб для определения содержания водорода в стали делятся на открытые и закрытые (или газосборные).
При открытом методе металл заливают в медный кокиль и отбирают пробу в кварцевую трубку и охлаждают ее с максимально возможной скоростью, предотвращая выделение водорода. Образец хранят при низких температурах. При использовании этого метода возможны ошибки систематического характера, связанные с одновременным поглощением и удалением водорода при закалке пробы в воде.
При закрытом методе проводится улавливание и сбор выделяющегося в процессе кристаллизации водорода в специальную металлическую или кварцевую ампулу. Этот метод исключает потери водорода при кристаллизации пробы и его поглощение при закалке пробы в воде. Метод является эффективным при низких концентрациях водорода, в частности, при вакуумировании.
Существует достаточно большое количество методов определения содержания водорода в металлах, наиболее распространенные из них – метод нагрева и плавления образцов в вакууме или в атмосфере инертных газов. К преимуществам метода относят проведение анализа при относительно невысокой температуре, отсутствие взаимодействия образца с материалом тигля, выделение при нагреве только водорода, что упрощает методику проведения анализа. Недостатком метода считают невозможность полного выделения водорода, особенно при анализе легированных сталей и большую продолжительность анализа.
К достоинствам метода с использованием газа-носителя относятся: отсутствие вакуума, низкие потери водорода, простота обслуживания аппаратуры и возможность автоматизации.
В настоящее время широкое применение для анализа водорода в металлах получили приборы фирм «Леко», «Лейбоулд-Хереус», «Болзерс». Например, прибор фирмы «Леко» работает с использованием аргона в качестве несущего газа, имеет нижнюю границу определения от 10-5 до 10-2 % и погрешность ± 3%.
Содержание водорода в сталеплавильных шлаках определяют методом вакуум-нагрева. Отобранный при помощи пробной ложки шлак разбивается на куски размером 15 – 20 мм и в раскисленном состоянии помещается в боксы с ангидроном. Навеска шлака для проведения анализа составляет примерно 1 г. Концентрацию водорода в шлаке определяют методом вакуум-нагрева на приборе конструкции Клячко-1 /4/. Прибор оборудован высокотемпературным нагревателем, способным обеспечить нагрев до 1774 К, и экстракционным сосудом из газонепроницаемого кварца. Конструкция прибора позволяет разделить выделяющийся газ на составляющие: СО, СО2, Н2О и определять их количество.
В последние годы предпринимались многочисленные попытки найти способ непосредственного определения содержания водорода в разливочном и промежуточном ковшах. Для этой цели пригодна система Гидрис, базирующаяся на применении погружного зонда .
В расплавленный металл вдувают определенный объем инертного газа. Газ улавливается пористым газопроницаемым керамическим конусом и затем каждые 6 секунд прокачивается в замкнутом цикле (V равно 20 мл) через измерительную систему.
Водород переходит в систему циркуляции Гидрис до тех пор, пока не установятся равновесные парциальные давления. Равновесное значение определяется путем измерения теплопроводности (с помощью катарометра) газа.
Точность измерений содержания водорода в стали по методике Гидрис составляет ± 35%. Время погружения зонда Гидрис 40 – 70 с.
Таким образом, система Гидрис является надежным способом экспрессного определения содержания водорода в жидкой стали, что позволяет использовать ее во внепечной обработке и разливке стали, контролируемом охлаждении непрерывно-литых заготовок.
1.4 Процесс растворения азота в металле
Межатомные силы внутри молекулы азота значительно превышают
соответствующие силы в молекулах водорода. Это объясняется тем, что диссоциация молекул азота на атомы происходит при более высоких температурах, чем молекул водорода.
Процесс растворения в металле азота имеет ту же природу, что и у водорода. Эта общность природы процессов определяет и некоторые общие черты термодинамики процессов растворения водорода и азота: справедливость для обоих случаев закона Сивертса, то есть прямой пропорциональности между количеством растворенного газа и корнем квадратным из парциального давления газа, положительное значение энтальпии процессов растворения ∆HS практически для всех расплавов железа как в случае азота, так и водорода.
Элементы, которые более склонны к образованию нитридов, чем железо, то есть имеют большее сродство к азоту, чем железо (Ti, Nb, V).
Наоборот, элементы, характерные сильными межатомными связями с железом, например С и Si, существенно понижают растворимость азота.
Азот активно взаимодействует с дислокациями и другими дефектами структуры металла в значительной степени влияет на его механические свойства.
Деформационным старением именуется изменение механических свойств железа и малоуглеродисой стали после холодной пластической деформации и последующей выдержки при комнатной и повышенных температурах (до 250ºС). Это явление характеризуется повышением пределов текучести и прочности, твердости, понижением пластических свойств при статических испытаниях и критической температуры хрупкого разрушения при испытании на удар.
Частный случай деформационного старения – синеломкость, вызванная, главным образом, присутствующим в стали азотом и углеродом. Ее признаки: снижение пластичности, повышение пределов текучести и прочности металла. Синеломкость проявляется уже при незначительном содержании азота; наивысшие значения предела прочности достигаются при его содержании около 0,01%.
В процессе старения в связи с сегрегацией атомов у дислокаций электрическое сопротивление и термоэлектродвижущая сила уменьшается /2/.
Азот в стали определяется с помощью системы Нитрис, работающей аналогично системе Гидрис.
... стали даже при незначительном изменении его содержания. Т.о., углерод является основным элементом, при помощи которого изменяются свойства сплава на основе железа. 2. Влияние углерода на свойства стали С изменением содержания углерода изменяется структура стали. В зависимости от содержания углерода она может иметь следующий вид: < 0,8% C – Ф+П 0,81% C – П (100%) > 0,81% C – П + ...
... Фк = 365 × 24 = 8760 ч Номинальный фонд времени – это количество часов в году в соответствии с режимом работы без учета потерь. Так как термическое отделение высокотемпературного отжига анизотропной электротехнической стали работает непрерывно, то номинальный фонд равен полному календарному, то есть Фн = Фк = 8760 ч. Действительный фонд времени равен тому времени, которое может быть ...
... технический университет Физико -технологический факультет Кафедра физического металловедения Курсовой проект Тема: “ Проект термического отделения для обезуглероживающего и рекристаллизационного отжига изотропной электротехнической стали третьей группы легирования в толщине 0,5 мм в условиях ЛПЦ-5 АО НЛМК. Годовая программа 120000 тонн Выполнила ст. гр. МТ-94-1 Кузнецова Е. В. ...
... высокой поверхностной твердости используют закалку ТВЧ (шестерни, коленчатые валы, поршневые пальцы и т.д.). Для получения высоких механических свойств в деталях сечением более 25–30 мм применяют легированные стали, которые обладают большей прокаливаемостью, более мелким зерном, их критическая скорость закалки меньше, следовательно, меньше закалочные напряжения, выше устойчивость против отпуска. ...
0 комментариев