2. Уравнения k-плоскости по k+1 точкам

Если заданы k+1 точек А00), А11), …, Аnn) и векторы А0Аа = ха – х0 независимы, то эти точки определяют единственную k – плоскость, проходящую через них: в этом случае за направляющие векторы этой плоскости можно принять векторы А0Аа и векторное уравнение k-плоскости можно записать в виде

 (6. 3)

Будем называть k-плоскость, определяемую точками А00), А11), …, Аnn), k-плоскостью А0, А1, …, Аk.

Случай k = n-1

В дальнейшем будем часто иметь дело с k-поверхностями и k-плоскостями при k = n – 1. Говоря, «поверхность n-пространства» и «плоскость n-пространства», но иметь в виду (n – 1)-поверхность и (n – 1)-плоскость этого пространства. Часто поверхность и плоскость называется соответственно гиперповерхностью и гиперплоскостью.

Поверхность можно задать одним координатным уравнением

 (6. 4)

если координаты xi, удовлетворяющие этому уравнению, можно представить как функции n – 1 параметров t1, t2, …, tn-1, то получим

 

F(x) = 0. (6. 5)


3. Взаимное расположение плоскостей

3. 1 Пересекающиеся плоскости

Во всём этом пункте размерности плоскостей и подпространств обозначены индексами снизу. Пусть две плоскости Пk и Пl пересекаются, то их пересечением является некоторая плоскость Пm.

 k = l = 2, m = 1 Рис. 15

Замечание 1. Не исключена возможность, что Пm состоит из одной точки (m = 0). Это видно на примере двух пересекающихся прямых или прямой и плоскости (рис. 16).

Рис. 16

В общем случае по одной точке могут пересекаться две плоскости, сумма разностей которых не превышает размерности пространства, например, двумерные плоскости в четырёхмерном пространстве.

Замечание 2. Не исключено и другое, когда одна из двух плоскостей целиком принадлежит другой. Например, , тогда  (рис. 17)

k = m = 1, l = 2

Рис. 17

2) Если плоскости Пk и Пl пересекаются по плоскости Пm, то существует единственная плоскость Пr, размерности r = k + l – m, содержащая Пk и Пl, причём ни в какой плоскости меньшей размерности Пk и Пl не могут одновременно поместиться. Направляющее подпространство Lr плоскости Пr является суммой направляющих подпространств Lk и Ll. Эта сумма является прямой суммой тогда и только тогда, когда Пk иПl пересекаются по одной точке (m = 0, см. рис. 18).

Рис. 18

В частном случае, когда n = k + l – m, роль плоскости Пr выполняет всё пространство Un (при r = n = 3 см. рис. 15).

3) Если пересекающиеся плоскости Пk и Пl содержатся в какой-нибудь плоскости Пr, то размерность их пересечения . В частности,  для любых двух непересекающихся плоскостей из Un.

4) Если плоскости Пk и Пl проходят через точку А в направлении подпространств Lk и Ll соответственно и если Lk содержится в Ll, то плоскость Пk содержится в плоскости Пl. Если при этом k = l, то Пk совпадает с Пl (также и Lk совпадает с Ll).

Параллельные плоскости

Пусть теперь плоскость Пk определяется точкой А и подпространством Lk, а плоскость Пl – точкой В и подпространством Ll. Будем считать, что .

Определение: Плоскость Пk параллельна плоскости Пl, если .

В этом случае плоскость Пl параллельна плоскости Пk.

Замечание 1. Согласно этому определению включение  является частным случаем параллельности.

Замечание 2. Если Пk параллельна Пl, причём k = l, то Lk совпадает с Ll.

Замечание 3. Убедимся, что при n = 3 частные случаи k = l = 1,

k = l = 2 и k =1, l = 2 согласуются с понятием параллельности прямых и плоскостей, известным из элементарной геометрии (рис. 19)

 а) б) в)

Рис. 19

Пусть в произвольной аффинной системе координат две плоскости П и Пl одинаковой размерности заданы системами линейных уравнений. Пользуясь определением параллельности, нетрудно установить следующее утверждение.

Утверждение. Для того, чтобы П и П были параллельными, необходимо и достаточно, чтобы соответствующие однородные системы уравнений были эквивалентны.

В частности, две гиперплоскости параллельны тогда и только тогда, когда в одних и тех же координатах они задаются уравнениями

 и (6. 6)


 (6. 7)

с пропорциональными коэффициентами при переменных:

.

 

Теорема 1. Пусть в аффинном пространстве Un даны плоскость Пk и точка В. Тогда существует единственная плоскость  размерности k, проходящая через точку В параллельно Пk. Если , то  совпадает с Пk; если точка В расположена вне Пk, то плоскости Пk и  не пересекаются.

Скрещивающиеся плоскости

Определение. Две плоскости называются скрещивающимися, если они не пересекаются и не параллельны.

Известно, что в трёхмерном пространстве U3 две прямые линии, т. е. одномерные плоскости, могут скрещиваться, тогда как прямая линия и двумерная плоскость в U3 скрещиваться не могут. С повышением размерности пространства оно становится более просторным, в результате чего появляется возможность строить в нём скрещивающиеся плоскости разных размерностей, а не только одномерные. Ниже сформулирована теорема 2, содержание которой можно рассматривать как общий приём построения скрещивающихся плоскостей. Именно, пусть в аффинном пространстве Un дана плоскость Пl (l < n). Возьмём произвольную плоскость Пk так, чтобы Пk и Пl не были параллельны и пересекались; плоскость, по которой они пересекаются, обозначим через Пm. Пусть Пr - плоскость наименьшей размерности, содержащая Пk и Пl. Мы знаем, что r = k + l – m.

Теорема 2. Если , то всякая k-мерная плоскость, которая параллельна Пk и не лежит в Пr, скрещивается с Пl.

Следствие. Если целые числа k, l, m, n удовлетворяют неравенствам

, , , то в Un найдутся скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, пересечение которых  имеет размерность m.

Доказательство теоремы 2. Так как , то плоскость Пr не исчерпывает собой всего пространства Un. Это позволяет взять (с большим произволом) точку С, не лежащую в Пr. Обозначим через  плоскость размерности k, проходящую через точку С, параллельно Пk. Ясно, что  не содержится в Пr и что, выбирая по-разному точку С, мы можем получить любую k-мерную плоскость, удовлетворяющую условию теоремы. (См. рис. 14, на котором k = l = 2, r = 2, n = 4, и трёхмерные плоскости условно изображены в виде параллелепипеда).

 

Рис. 20

Докажем, что плоскости Пl и  скрещиваются. Заметим, что плоскость  не параллельна Пl, так как в противном случае или , или , что противоречит условию расположения плоскостей Пk и Пl.

Теперь докажем, что  и Пl не пересекаются. Проведём через точку С вспомогательную r-мерную плоскость , параллельную Пr. Тогда  и поэтому Пk не может пересечь Пl ибо в противном случае точка их пересечения  принадлежала бы параллельным плоскостям Пr и . Следовательно, скрещивается с Пl. Теорема 2 доказана.

Пусть в n-мерном аффинном пространстве Un даны скрещивающиеся плоскости Пk и Пl с направляющими подпространствами Lk и Ll, причём

, .

 

Теорема 3. Существует единственная плоскость Пr+1 размерности , содержащая плоскости Пk и Пl.

Доказательство. Возьмём произвольную точку  и зафиксируем произвольную точку ; обозначим через  линейную оболочку вектора  (рис. 16). Допустим, что существует какая-то плоскость , содержащая Пk и Пl; пусть  - её направляющее подпространство. Очевидно, что  должно содержать Lk, Ll и , а следовательно, и сумму этих подпространств. Обозначим эту сумму через Lr+1:

Обратно, если  - любое подпространство, включающее Lr+1, то , проходящая через точку А в направлении , будет содержать Пk и Пl. В самом деле, так как  и, то; так как , то , так как  и , то .


 

Рис. 21

Получим среди всех плоскостей  искомую плоскость Пr+1 минимальной размерности r + 1 в том единственном случае, когда в качестве  берётся Lr+1. Подсчитаем r + 1. С этой целью рассмотрим  и обозначим размерность  через р. По теореме 3 (в n-мерном пространстве L имеются подпространства Lk и Ll, размерности которых соответственно равны k и l. Если их пересечение имеет размерность m, то размерность их суммы Lk + Ll равна r = k + l – m) имеем р = k + l – m.

Покажем, что  есть прямая сумма, поэтому размерность Lr+1 равна р + 1, то есть (r + 1) = (k + l – m) +1.

Для этого достаточно показать, что вектор  не принадлежит пространству . Предположим противное. Пусть . Тогда по определению суммы подпространств существуют векторы х и у такие, что, , . (v) По первой аксиоме аффинного пространства найдётся точка С такая, что , причём . По второй аксиоме аффинного пространства . (vv)

Учитывая (v), (vv), находим, что , так что . Получается, что плоскости Пk и Пl имеют общую точку С, но это невозможно, поскольку плоскости Пk и Пl скрещиваются. Теорема 3 доказана.

Замечание. Рисунок 20 лишь частично иллюстрирует теорему 3. Например, если размерности Пk и Пl больше m и различны между собой, , то, как,

Проведённые выше рассуждения показывают, что плоскости Пk и Пl, о которых идёт речь в теореме 3, не содержатся ни в какой плоскости меньшей размерности, чем r + 1.

Сохраняя обозначения предыдущего подпункта, сформулируем достаточное условие пересечения двух плоскостей.

Теорема 4. Если в Un даны плоскости Пk и Пl, такие, что , где m – размерность пересечения Lm направляющих подпространств Lk и Ll, то Пk и Пl пересекаются.

Доказательство. Исключая тривиальный случай, когда какая-нибудь из данных плоскостей совпадает со всем пространством, имеет

В расположении двух данных плоскостей могут быть лишь три возможности:

либо Пk параллельна Пl;

либо плоскости Пk и Пl скрещиваются;

либо они пересекаются.

Если Пk параллельна Пl, то для размерности m пересечения соответствующих им пространств Lk и Ll имеем m = min (k, l). Теорема доказана.


Информация о работе «Многомерная геометрия»
Раздел: Математика
Количество знаков с пробелами: 84631
Количество таблиц: 3
Количество изображений: 48

Похожие работы

Скачать
13881
0
0

... работы австрийского геометра Эрвина Круппа, получившие развитие в трудах русских ученых Н.А. Глаголева, Н.Ф. Четверухина. В середине XIX века зарождается и получает развитие начертательная геометрия многих измерений - многомерная геометрия. Итальянский математик Веронезе и голландский ученый Скаутте дают начало этому новому направлению. В России многомерная начертательная геометрия развивалась в ...

Скачать
46891
0
0

... рода: перейти к новому образу рациональности. На смену диалектике "единства противоположностей" (как в гегелевской, так и в марксистской ее интерпретации) приходит интервальная диалектика постижения многомерного мира. "Синтез противоположностей" заменяется конструированием соответствующих конфигураций интервалов. В истории познавательного освоения мира человеком можно встретить различные случаи ...

Скачать
27213
0
0

... временные и пространственные отличие установлены, таково и само нечто. Подобного же необходимого порядка мы ждем и от категориальной системы, классифицирующей сложные предметы материальной культуры. 2. Концепция многомерной онтологии. Прежде чем вернуться к техническим предметам материальной культуры, мы рассмотрим традиционную онтологию. Мы ждем, что эта традиция укажет ориентиры и нашему ...

Скачать
7057
0
0

... нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем ...

0 комментариев


Наверх