3. Простейшие свойства решений системы (I)

Мы установим некоторые cвойства решений системы (I), являющиеся следствием автономности этой системы.

Лемма 1. Если

есть решение системы (I), определенное на интервале (, Т), то

(2)

где С — любая постоянная, также есть решение системы (I) и это решение определено на интервале ( — С, Т — С).

Доказательство. Так как (1) есть решение системы (I), то при всех t  (, Т) имеет место тождественное равенство

(), .

Если заменить в этих равенствах t на t+C, то при всех t ( —С,Т — С) мы будем иметь тождественное равенство

 

  (3)

Но, очевидно

,  

и, следовательно, равенства (3) могут быть записаны в виде

 

Последние равенства показывают, что функции (2) являются решением системы (I). Тот факт, что это решение определено на интервале ( — С, Т — С), устанавливается простым рассуждением, которое мы опускаем. Лемма доказана.

С точки зрения геометрической интерпретации в трехмерном пространстве утверждение леммы 1 означает, что линия, получающаяся из любой интегральной кривой путем сдвига ее вдоль оси t на любой отрезок, также есть интегральная кривая. В самом деле, интегральная кривая

получается из интегральной кривой

сдвигом вдоль оси t на величину С.

Лемма 2.

а) Решения системы (I)

 (1)

 и (2)

можно рассматривать как решения, удовлетворяющие начальным условиям с одинаковыми начальными значениями х0 и у0 и различными начальными значениями переменного t.

б) Два решения, удовлетворяющие начальным условиям с одинаковыми начальными значениями переменных х0, у0 и различными начальными значениями t,могут быть получены одно из другого заменой t на  с надлежащим выбором постоянной С.

Доказательство. Если решение (1) соответствует начальным значениям t0, x0, у0 так, что

(3)

то в силу очевидных равенств

 (t0—С + С) =  (t0) = x0 ψ (t0—С + С) = ψ (t0) = y0

решение (2) соответствует начальным значениям t0—С, х0, у0, что и доказывает утверждение а).

Далее, рассмотрим наряду с решением (1), соответствующим начальным значениям t0, x0, у0, решение

(4)

соответствующее начальным значениям , x0, у0, где  t0. Если в решении

(2)

величину С взять равной t0, то оно, очевидно, будет соответствовать тем же начальным значениям , x0, у0, что и решение (4). В силу единственности решения, удовлетворяющего данным начальным условиям, отсюда следует

 ,

что и доказывает утверждение б) леммы.

В дальнейшем, рассматривая наряду с решением (1) решение (2), мы будем часто говорить, что рассматриваются решения, отличающиеся выбором начального значения t. Решение всякой системы двух дифференциальных уравнении, соответствующее любым произвольным начальным значениям t0, х0, у0 , очевидно, является функцией t, t0, х0, у0 , т. е. записывается в виде

х = Ф(t, t0, х0, г/о), y= Ψ (t, t0, х0, у0) (5)

При этом по самому смыслу функций Ф (t, t0, х0, у0) и Ψ (t, t0, x0, у0), Ф(t0, t0, х0, у0) = х0, Ψ (t0, t0, х0, у0)= у0

Однако в случае системы (1), вследствие автономности этой системы, функции (5) являются по существу не функциями переменных t и t0, а функциями разности t—t0. Это устанавливается в следующей лемме:

Лемма 3. Решение системы (I) как функции от t и от начальных значений t0 , x0 , у0 ,может быть записано в виде

x = (t—t0 , х0 , у0), y = ψ(t —t0, х0, у0). (6)

Доказательство. Рассмотрим наряду с решением (5) решение

х = Ф(t, 0, х0, у0), y =Ψ (t, 0, х0, у0),

удовлетворяющие начальным условиям: при t=0, х=х0, у=у0

В силу леммы 1 функции

x = Ф (t — t0, 0, х0, у0), y =Ψ (t— t0 ,0, х00) (7)

также являются решением системы (I). Решения (5) и (7) соответствуют одним и тем же начальным значениям t0, x0, у0 . Но тогда эти решения совпадают, т. е.

Ф (t ,t0 , х0, у0)= Ф (t — t0, 0, х0, у0)

Ψ (t , t0, х00)= Ψ (t— t0 ,0, х00)

Введение обозначений


Ф (t — t0, 0, х0, у0)=(t—t0 , х0 , у0),

Ψ (t— t0 ,0, х00)= ψ(t —t0, х0, у0)

устанавливает справедливость утверждения леммы.

В дальнейшем решение системы (I), соответствующее начальным значениям t0, х0, у0, мы всегда будем записывать в виде (6).

Лемма 4. Если решение

x = (t—t0 , х0 , у0), y = ψ(t —t0, х0, у0). (8)

определено при значении t = t1 , и

 (9) то

(t—t0 , х0 , у0)  (t —t1, х0, у0)

ψ(t—t0 , х0 , у0)  (t —t1, х0, у0) (10)

Доказательство. Из соотношений (9), очевидно, следует, что решение (8) и решение

x = (t —t1, х0, у0), y=  (t —t1, х0, у0)

являются решениями, соответствующими одним и тем же начальным значениям t1 , х1 , y1. Но тогда эти решения совпадают, т. е. имеют место равенства (10).

Замечание. Полагая в тождествах (10) t = t0, мы получим

x0 = (t0 t1 , х1 , у1) , y0 = ψ(t0 t1 , х1 , у1)

Это, очевидно, справедливо при любых t1 , х1 , у1 удовлетворяющих соотношениям (10). Опуская индексы, мы получаем

x0 = (t0—t, х, у) , y0 = ψ(t0—t, х, у).

Лемма 5. Если система (I) является системой класса Сn , тo функции

x0 =(t—t0 , х0 , у0) , y0 = ψ (t—t0 , х0 , у0)

при всех значениях, входящих в них переменных, при которых эти функции определены, имеют непрерывные (по совокупности всех переменных) частные производные:

1) по t (или t0) до порядка n+1 включительно,

2) по х0 и у0 до порядка n включительно

3). пo t (или t0) и по х0 и у0—содержащие по крайней мере одно дифференцирование по t (или t0)—до порядка n + 1


Информация о работе «Динамические системы в плоской области»
Раздел: Математика
Количество знаков с пробелами: 75588
Количество таблиц: 0
Количество изображений: 20

Похожие работы

Скачать
568458
20
78

... для реализации системы бюджетирования Консультационной группы "Воронов и Максимов". Статья о проблемах выбора системы бюджетирования - в проекте "УПРАВЛЕНИЕ 3000". Бюджетный автомат Если вы решитесь на автоматизацию системы бюджетирования компании, перед вами сразу встанут вопросы: что выбрать, сколько платить, как внедрять. Примеряйте! О ЧЕМ РЕЧЬ В “Капитале” на стр. 44, 45 мы рассказали ...

Скачать
135054
16
63

... сети могут быть использованы как классификаторы для разделения образцов рассогласований и формирования сигналов тревог. Таким образом, они могут выявлять и изолировать отказы. 3. Диагностика отказов системы регулирования уровня жидкости в баке   3.1. Постановка задачи Реализацию описанного выше метода диагностики отказов, основанного на моделях будем выполнять применительно к системе ...

Скачать
257667
0
26

... их интеграция, расширение их возможностей в новых версиях, создание новых средств и перенос их на другие аппаратные платформы и в другие ОС IBM. 12.4 Операционная система z/VM ОС z/VM [21, 24, 42] (последняя версия - V4R2) является высокопроизводительной многопользовательской интерактивной ОС, предоставляющей уникальные возможности в части выполнения различных операционных сред на одном ...

Скачать
175590
30
100

... , может приводить к большим потерям рабочего тела и раскрутке космического аппарата до недопустимых угловых скоростей. Таким образом разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата – является актуальной задачей. В настоящей работе решается задача построения алгоритмов контроля и идентификации отказов командных приборов и исполнительных органов. ...

0 комментариев


Наверх