4.7. ЭММ оптимизации раскроя материала.

Данная модель позволяет выбирая один из способов раскроя, изготовить определенное количество заготовок с минимальным расходом материала.

Э

М

М

 
(18)

i – номер (вид) заготовки;

n – общее количество разновидностей заготовок;

j – способ раскроя;

m – общее количество способов раскроя;

bij – количество выкраиваемых заготовок;

Вi – количество штук заготовок i вида;

Xj – количество исходного материала, который необходимо раскроить j способом;

Pj- величина отходов при данном j-м способе раскроя.

4.8. Экономическая интерпретация двойственных задач линейного программирования.

При моделировании экономических систем и процессов, когда характер системы до конца не изучен, или же система сложная, прибегают к упрощению модели и представлению ее в виде линейной (прямой или обратной).

Исходная модель предполагает, сколько и какой продукции необходимо изготовить с заданной стоимостью cj(j=) и при заданных ресурсах bi(i=) и получить максимальную прибыль в стоимостном выражении.

Двойственная (обратная) задача предполагает оценку стоимости единицы каждого из ресурсов, чтобы при заданном количестве ресурсов bi и стоимости единицы продукции cjминимизировать общую стоимость затрат.

целевая функция исходной задачи

 

целевая функция обратной задачи

 
åcx = åby

Тема 5. Методы моделирования стохастических (вероятностных) систем. Имитационное моделирование.

5.1. Понятие о вероятностных системах и процессах.

Экономические системы, как правило, являются вероятностными (стохастическими), так как выходные параметры системы случайным образом зависят от входных параметров.

Почему экономические системы являются стохастическими:

1)      так как система сложная, многокритериальная многоуровневая иерархическая структура;

2)      система подвержена влиянию внешних факторов (погодные условия, внешняя политика);

3)      преднамеренное искажение информации, сокрытие информации и целенаправленная экономическая диверсия.

Исходя из того, что экономическая система сложная и имеет случайную компоненту e,

поэтому оптимизация целевой функции ведется по среднему значению, то есть при заданных параметрах a необходимо найти решение хÎC, когда значение целевой функции по возможности будет максимальным.

Сложные системы описываются Марковским аппаратом, то есть когда поведение системы в момент t0 характеризуется вероятностью первого порядка p(х0, t0) и поведение системы в будущем зависит от значения системы х0 и не зависит от того, когда и как система пришла в это состояние.

Марковские случайные процессы описываются двумя параметрами:

1)            вероятностью первого порядка p(х0, t0);

2)            условной вероятностью pij2 t21 t1);

pijхарактеризует значение системы х2 в момент t2, при условии, что в момент t1 система имела значение х1.

Имея в своем распоряжении матрицу условных переходов

можно заранее сформулировать поведение системы в будущем.

Марковские случайные процессы называют Марковскими цепями с вероятностью перехода в pij, когда процесс изучается в дискретные моменты времени.

5.2. Имитационное моделирование систем и процессов.

Применяется в случаях, когда нельзя заформализовать модель (описать аналитическим выражением) и в случае, когда система представляет собой многопараметрическую вероятностную экономическую систему. Кроме того, моделирование с помощью имитационных подходов применяется для систем больших размерностей и с большими внутренними связями.

Основные этапы моделирования:

1)       анализ моделируемой систем, сбор необходимой информации, выделение проблемной области исследования и постановка задач на исследование;

2)       синтезирование (формирование, получение) необходимой математической модели области допустимых упрощений (ограничений), выбор критериев оценки эффективности и точности моделирования;

3)       разработка имитационной модели, алгоритма ее реализации, внутреннее и внешнее математическое обеспечение;

4)       оценка адекватности имитационной модели и контроль результатов экстремумов с последующей валидацией модели;

5)       анализ результатов моделирования с целью достижения заданной точности моделирования.


Информация о работе «Экономико-математическое моделирование»
Раздел: Математика
Количество знаков с пробелами: 51386
Количество таблиц: 5
Количество изображений: 18

Похожие работы

Скачать
54963
0
0

... отрезка времени. Как правило, это задача, решение которой влечет за собой постановки близких или аналогичных задач. Глава 2. Экономико-математическое моделирования процессов принятия управленческих решений. В классификации решений по времени действия выражается принцип их цикличности, определенная хронологическая последовательность, временные рамки которой неизбежно должны учитываться в процессе ...

Скачать
19308
0
0

... производственной функции, моделей поведения фирмы, моделей общего экономического равновесия, прежде всего модели Л. Вальраса и ее модификаций. Глава 2. История развития экономико-математического моделирования в США Для характеристики математического направления в экономике за последние 80 – 90 лет приведу лишь некоторые результаты, сыгравшие заметную роль в его развитии. Как в теоретическом, ...

Скачать
18372
0
1

... вопросы должны быть получены в ходе маркетинговых и проектно-изыскательских работ на фазе проектирования спортивных сооружений. И уже на этой стадии в процесс активно включаются экономико-математические методы, задействуется существующий аппарат математического моделирования и прогнозирования. Данные методы и расчеты совершенно необходимы для определения: сроков окупаемости отдельных предприятии ...

Скачать
21685
14
1

... <= 2,10 В разделе 1 проекта требуется: 1.    Определить количество закупаемого заданным филиалом фирмы сырья у каждого АО, (xj), максимизируя прибыль филиала. Нужно формулировать экономико-математическую модель общей задачи линейного программирования (ОЗЛП); 2.    С помощью полученных в результате реализации модели отчетов сделать рекомендации филиалу фирмы по расширению программы ...

0 комментариев


Наверх