21. Угол между прямой и плоскостью. Расстояние от точки до плоскости.
Прямая L:
Пусть φ – угол между плоскостью и прямой.
Тогда θ – угол между и.
Найдем , если
, т.к.
Расстояние от точки до плоскости.
Дано:
M0 (x0;y0;z0)
Расстояние d от точки М0 до плоскости ∆ равно модулю проекции вектора (где М1(x1;y1;z1) - произвольная точка плоскости) на направление нормального вектора
!!!Если плоскость задана уравнением:
то расстояние до плоскости находится по формуле:
22. Прямая на плоскости. Виды уравнений прямой на плоскости. Угол между двумя прямыми.
Уравнение с угловым коэффициентом.
k= tg α – угловой коэффициент.
Если b=0 то прямая проходит через начало координат. Уравнение примет вид
Если α=0, то k = tg α = 0. То прямая пройдет параллельно оси ох.
Если α=π/2, то уравнение теряет смысл. В этом случае уравнение примет вид и пройдет параллельно оси оу.
Общее уравнение прямой.
A, B, C – произвольные числа, причем А и В не равны нулю одновременно.
· Если В=0, то уравнение имеет вид или . Это уравнение прямой, параллельной оси оу. и проходящей через точку
· Если В≠0, то получаем уравнение с угловым коэффициентом .
· Если А=0, то уравнение имеет вид . Это уравнение прямой, параллельной оси ох.
· Если С=0, то уравнение проходит через т. О (0;0).
Уравнение прямой, проходящей через точку, в данном направлении.
т М (х0;у0).
Уравнение прямой записывается в виде .
Подставим в это уравнение точку М
Решим систему:
Уравнение прямой, проходящей через 2 точки.
К (х1;у1) М (х2;у2)
Уравнение прямой в отрезках.
К (а;0); М (0;b)
Подставим точки в уравнение прямой:
Уравнение прямой, проходящей через данную точку, перпендикулярно данному вектору.
М0 (х0;у0).
Возьмем произвольную точку М (х;у).
Т.к. , то
Нормальное уравнение прямой.
Уравнение прямой можно записать в виде:
Т.к. ;, то:
Угол между прямыми.
Дано: прямые L1 и L2 с угловыми коэффициентами
Требуется найти угол между прямыми:
... для увеличения объема выпуска требуется замена оборудования и постоянные издержки принимают форму переменных. Предельные затраты - дополнительные издержки пр-ва, необходимые для пр-ва дополнительной единицы пр-ции. 17. Экономика пред.. Доход и прибыль пред.. Виды прибыли и ее распределение. Рент. пред.. Виды прибыли. Различают прибыль бухгалтерскую и чистую экономическую прибыль. Как правило, ...
одно малые по модулю.Св-ва сходящихся посл-тей Теорема «Об единственности пределов» Если посл-ть xn сходится, то она имеет единственный предел. Док-во (от противного) {xn} имеет два разл. Предела a и b, аb. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом ...
... СКЦ-2М Осреднитель тонн м³ м³ шт шт шт шт шт шт 64,8 6,6 32,4 2 3 3 1 1 2 80,7 6,6 38,8 2 3 4 1 1 2 39 1,1 14 1 4 5 1 1 1 3. ЭКОНОМИЧЕСКИЙ РАСЧЕТ СМЕТА К РАБОЧЕМУ ПРОЕКТУ на строительство эксплуатационной скважины №11 на площади СЕВЕРО-ПРИБРЕЖНАЯ. Цель работ эксплуатация Способ бурения роторный Вид бурения вертикальный ...
... , не то дочь. Не мышонка, не лягушку, А неведому зверушку». Но в сказках добро всегда побеждает зло, а посему интриганки были в конце концов наказаны. Обман в нашей жизни ИСТОРИЯ Бог не может изменить, прошлое, но историки могут. Сэмюэль Батлер Обман, фальсификация и подлоги —.нередкое дело в истории. Человечество накопило их в таком ...
0 комментариев