Структурное среднее

Общая теория статистики
Основные понятия и категории статистической науки в целом Программно-методологические вопросы статистического наблюдения Точность статистического наблюдения. Контроль материалов статистического наблюдения Основные проблемы возникающие при построении группировок Построение группировок по количественному признаку Статистические таблицы. Их виды Чтение и анализ статистической таблицы Структурное среднее Внутригрупповая и межгрупповая дисперсия Непараметрические показатели тесноты взаимосвязи. Спирмен. Кендалл Сопоставимость уровней и смыкаемость рядов динамики Роль индексного метода в статистических исследованиях Важнейшие экономические индексы и их взаимосвязь Общее понятие группировок Средняя гармоническая Дисперсия альтернативного признака Изучение зависимости между количественными признаками
127309
знаков
9
таблиц
0
изображений

39. Структурное среднее.

40. Мода и медиана, их определение в вариационных рядах.

Структурное среднее характеризует состав статистической совокупности по одному из варьирующих признаков. К этим средним относятся мода и медиана.

Мода - такое значение варьирующего признака, которое в данном ряду распределения имеет наибольшую частоту.

В дискретных рядах распределений мода определяется визуально. Сначала определяется наибольшая частота, а по ней модальное значение признака. В интервальных рядах для вычисления моды используется следующая формула:

Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)

Mo - величина интервала

fMo - частота модального интервала

fMo-1 - частота интервала предшествующего модальному

fMo+1 - частота интервала следующего за модальным

Медианой называется такое значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот. Медиана рассчитывается по разному в дискретных и интервальных рядах.

1. Если ряд распределения дискретный и состоит из четного числа членов, то медиана определяется как средняя величина из двух серединных значений рангированного ряда признаков.

2. Если в дискретном ряду распределения нечетное число уровней, то медианой будет серединное значение рангированного ряда признаков.

В интервальных рядах медиана определяется по формуле:

- нижняя граница медианного интервала (интервала для которого накопленная частота впервые превысит полусумму частот)

Me - величина интервала

- сумма частот ряда

- сумма накопленных частот предшествующих медианному интервалу

- частота медианного интервала


41. Общее понятие о вариации.

Вариацией называется различие значений признака у отдельных единиц совокупности.

Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности. Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.

Вариации в пространстве показывают различие статистических показателей относящихся к различным административно-территориальным единицам.

Вариации во времени показывают различие показателей в зависимости от периода или момента времени к которым они относятся.


42. Сущность и значение показателей вариации.

43. Абсолютные показатели вариации (=42, без коэффициента).

К примерам вариаций относятся следующие показатели:

1. размах вариаций

2. среднее линейное отклонение

3. среднее квадратическое отклонение

4. дисперсия

5. коэффициент


1. Размах вариаций является ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. R=Xmax-Xmin.


2. Среднее линейное отклонение является средней величиной абсолютных значений отклонений от средней арифметической. Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.


3. Среднее квадратическое отклонение определяется как корень из дисперсии.


4. Дисперсия (средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблимости.

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака.


5. Коэффициент вариаций определяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах:

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.


44. Дисперсия и ее свойства.

Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины.

Свойства дисперсии:

1. Дисперсия постоянной величины равна нулю.

2. Уменьшение всех значений признака на одну и ту же величину А не меняет величины дисперсии. Значит средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-то постоянного числа.

3. Уменьшение всех значений признака в k раз уменьшает дисперсию в k2 раз, а среднее квадратическое отклонение - к раз. Значит, все значения признака можно разделить на какое-то постоянное число (скажем, на величину интервала ряда), исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число.

4. Если исчислить средний квадрат отклонений от любой величины А, то в той или иной степени отличающейся от средней арифметической (X~), то он всегда будет больше среднего квадрата отклонений, исчисленного от средней арифметической. Средний квадрат отклонений при этом будет больше на вполне определенную величину - на квадрат разности средней и этой условно взятой величины.



Информация о работе «Общая теория статистики»
Раздел: Статистика
Количество знаков с пробелами: 127309
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
9891
1
0

... экономико-рыночных отношений в нашей стране ставит перед школой новые задачи. Умение анализировать, сравни­вать различные ситуации необходимо на сегодняшний день каждому современному человеку. Элективный курс «Общая теория статистики» с помощью математического аппарата даст начальные понятия о статистике, которые необходимы при решении управленческих задач. Курс рассчитан для учащихся 11 класса ...

Скачать
15015
7
50

... ; q1, q2 - объем отчетного, базисного периодов соответственно) для величины (цены) по каждому виду товара для величины q (объема) по каждому виду товаров: Найдем общие индексы по формулам: представляет собой среднее значение индивидуальных индексов (цены, объема), где j – номер товара. Общий индекс товарооборота равен: Найдем абсолютное ...

0 комментариев


Наверх