Войти на сайт

или
Регистрация

Навигация


Внутригрупповая и межгрупповая дисперсия

Общая теория статистики
Основные понятия и категории статистической науки в целом Программно-методологические вопросы статистического наблюдения Точность статистического наблюдения. Контроль материалов статистического наблюдения Основные проблемы возникающие при построении группировок Построение группировок по количественному признаку Статистические таблицы. Их виды Чтение и анализ статистической таблицы Структурное среднее Внутригрупповая и межгрупповая дисперсия Непараметрические показатели тесноты взаимосвязи. Спирмен. Кендалл Сопоставимость уровней и смыкаемость рядов динамики Роль индексного метода в статистических исследованиях Важнейшие экономические индексы и их взаимосвязь Общее понятие группировок Средняя гармоническая Дисперсия альтернативного признака Изучение зависимости между количественными признаками
127309
знаков
9
таблиц
0
изображений

45. Внутригрупповая и межгрупповая дисперсия.

Выделяют дисперсию общую, межгрупповую и внутригрупповую. Общая дисперсия 2 измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию.

Межгрупповая дисперсия (2x) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки.

Внутригрупповая дисперсия (2i) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки.


46. Правило сложения дисперсий.

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, возникающей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или проверить правильность расчета третьего вида.

Правило сложения дисперсий широко применяется при исчислении показателей тесноты связей, в дисперсионном анализе, при оценке точности типической выборки и в ряде других случаев.


47. Взаимосвязи общественных явлений, их виды, формы.

Многообразие взаимосвязей в которых находятся социально-экономические явления, рождают необходимость в их классификации.

По видам различают функциональную и корреляционную зависимость.

Функциональной называют такую зависимость, при которой одному значению факторного признака X соответствует одно строго определенное значение результативного признака Y.

В отличие от функциональной зависимости, корреляционная выражает такую связь между социально-экономическими явлениями, при которой одному значению факторного признака X могут соответствовать несколько значений результативного признака Y.

По направлению различают прямую и обратную зависимость.

Прямой называют такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.

Обратная зависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.


50. Анализ взаимосвязи качественных признаков.

Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:


Группы по признаку Y

Группы по признаку X

+

-

Итого:

+

a

b

a+b

-

c

d

c+d

Итого:

a+c

c+d

a+b+c+d


Если коэффициент ассоциации  0,5, а коэффициент контингенции  0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.

Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:

С - коэффициент Пирсена

К - коэффициент Чупрова

 - показатель взаимной сопряженности

K - число значений (групп) первого признака

K1 - число значений (групп) второго признака


fij - частоты соответствующих клеток таблицы

mi - столбцы таблицы

nj - строки


Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:

Группа признака Y

Группа признака X

1

2

...

i

Итого:

1

f11

f12

...

f1i

n1

2

f21

f22

...

f2i

n2

...

...

...

...

...

...

j

fji

fj2

...

fji

nj

Итого:

m1

m2

...

mi

minj

При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

n - число наблюдений

S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.

S=P+Q

P - сумма значений рангов, следующих за данными и превышающих его величину

Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).

При наличии связанных рангов формула коэффициента Кендалла будет следующей:

Vx и Vy определяются отдельно для рангов X и Y по формуле:


51. Статистические методы изучения взаимосвязей.

Важное место в статистическом изучении взаимосвязей занимают следующие методы:

1. Метод приведения параллельных данных.

2. Метод аналитических группировок.

3. Графический метод.

4. Балансовый метод.

5. Индексный метод.

6. Корреляционно-регрессионный.


1. Сущность метода приведения параллельных данных заключается в следующем:

Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.


3. Сущность графического метода составляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:

а , б/ (вверх) , в\ (вниз).

Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.

Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.

Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.

На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.

Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:

C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.

H - сумма несовпадений

Данный коэффициент изменяется в пределах (-1;1).

Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.

Если KF=1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>0,6 делается вывод о наличии сильной прямой (обратной) зависимости между признаками.

- квадраты разности рангов

(R2-R1), n - число пар рангов

Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KF экономическую интерпретацию.



Информация о работе «Общая теория статистики»
Раздел: Статистика
Количество знаков с пробелами: 127309
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
9891
1
0

... экономико-рыночных отношений в нашей стране ставит перед школой новые задачи. Умение анализировать, сравни­вать различные ситуации необходимо на сегодняшний день каждому современному человеку. Элективный курс «Общая теория статистики» с помощью математического аппарата даст начальные понятия о статистике, которые необходимы при решении управленческих задач. Курс рассчитан для учащихся 11 класса ...

Скачать
15015
7
50

... ; q1, q2 - объем отчетного, базисного периодов соответственно) для величины (цены) по каждому виду товара для величины q (объема) по каждому виду товаров: Найдем общие индексы по формулам: представляет собой среднее значение индивидуальных индексов (цены, объема), где j – номер товара. Общий индекс товарооборота равен: Найдем абсолютное ...

0 комментариев


Наверх