Потери напора по длине

Лекции по гидравлике
Общие сведения о жидкости 1.1. Жидкость как физическое тело Основные физические свойства жидкостей Многокомпонентные жидкости Дифференциальное уравнение равнове­сия жидкости Равновесие твёрдого тела в жидкости Уравнение неразрывности для элементарной струйки жидкости Динамика идеальной жидкости Интерпретация уравнения Бернулли Уравнение Бернулли для потока реальной жидкости Потери напора по длине Экспериментальное изучение движения жидкости Турбулентное движение жидкости Кавитационные режимы движения жидкости Истечение жидкости через насадки Неустановившееся истечение жидкости из резервуаров Движение жидкостей в трубопроводах Сложные трубопроводы Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения Скорость распространения упругих волн в трубопроводе Движкние газа по трубам 10.1. Основные положения и задачи Безнапорное движение жидкости Движение жидкости в безнапорных (самотёчных) трубопроводах Движение вязкопластических жидкостей в трубах Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях Элементы теории подобия
191065
знаков
4
таблицы
84
изображения

5.6. Потери напора по длине

При установившемся движении реальной жидкости основные параметры потока: ве­личина средней скорости в живом сечении (v) и величина перепада давлениязависят от физических свойств, движущейся жидкости и от размеров пространства, в котором жидкость движется. В целом, физические свойства жидкости определяются через размер­ные величины, называемые физическими параметрами жидкости.

Можно установить взаимосвязь между всеми параметрами, от которых зависит дви­жение жидкости. Условно эту зависимость можно записать как некоторую функцию в не­явном виде.

где: - линейные величины, характеризующие трёхмерное

пространство,

 - линейная величина, характеризующая состояние стенок ка­нала (шероховатость), величина выступов,

 - средняя скорость движения жидкости в живом сечении по­тока,

 - разность давления между начальным и конечном живыми сечениями потока (перепад давления),

 - удельный вес жидкости,

- плотность жидкости,

- динамический коэффициент вязкости жидкости,

 - поверхностное натяжение жидкости, К - модуль упругости жидкости.

Для установления зависимости воспользуемся выводами так называемой-теоремы. Суть её заключается в том, что написанную выше зависимость, выраженную в неявном виде, можно представить в виде взаимозависимых безразмерных комплексов. Выберем

три основных параметра с независимыми размерностями, остальные парамет-

ры выразим через размерности основных параметров.

Эта операция выполняется следующим образом: пусть имеется некоторый параметр i, выразим его размерность через размерности основных параметров; это будет означать:

 ?

т.е. размерности левой и правой частей равенства должны быть одинаковыми. Тогда можно записать:

Полученные в результате такой операции безразмерные параметры будут называться пи-членами. Эти безразмерные комплексы имеют глубокий физический смысл, они пред­ставляют собой критерии подобия различных сил, действующих в тех или иных процес­сах.

Проделаем такую операцию с некоторыми из параметров.

Параметр А.

 i

Теперь запишем показательные уравнения по размерностям последовательно в сле­дующем порядке: L (длина), М (масса), и Т (время):

Из этой системы уравнений: Таким образом, безразмерным

комплексом по этому параметру может быть: Параметр у.

 >* ' откуда получим:

и найдём: . Таким образом, безразмерным комплексом по

этому параметру может быть:  . Эта безразмерная величина называется

числом Фруда, Fr. Параметр /и.

и найдём:

Полученный безразмерный комплекс называется числом Рейнольдса, Re. Выполняя аналогичные операции с остальными параметрами можно найти:

 число Эйлера, число Вебера, We.

 число Коши, Са. В итоге получим как результат:

Поскольку, в большинстве случаев силами поверхностного натяжения можно пре­небречь, а жидкость считать несжимаемой средой, можно упростить запись предыдущего выражения, решив последнее уравнение относительно Ей:

Считая канал круглой цилиндрической трубой, и принимая, получим:

Множитель был вынесен за скобки ввиду того, что потери напора по длине пропор­циональны длине канала конечных размеров. Далее учитывая, что:, по­лучим:

Обозначим: Эту величину принято называть коэффициен-

том сопротивления трения по длине или коэффициентом Дарси. Окончательно для круглых труб, учитывая, что:

Эта формула носит название формулы Дарси-Вейсбаха и является одной из основ­ных формул гидродинамики.

Коэффициент потерь напора по длине будет равен:

Запишем формулу Дарси-Вейсбаха в виде:

Величину называют гидравлическим уклоном, а величинуназыва-

ют коэффициентом Шези.

Величина  имеет размерность скорости и носит название динамической

скорости жидкости.

Тогда коэффициент трения (коэффициент Дарси):

' ' 6. Режимы движения жидкости


Информация о работе «Лекции по гидравлике»
Раздел: Физика
Количество знаков с пробелами: 191065
Количество таблиц: 4
Количество изображений: 84

Похожие работы

Скачать
124283
0
0

... и никто в России не отдавал себе отчета и не имел ясного представления о том, как работает вообще мировая политическая мысль и каким образом вообще совершаются мировые события. Дипломатия, политика в лучшем случае рисовались как система известных навыков и приемов, присущих дипломатическим канцеляриям. Оценка дипломатического таланта и умения сводилась к признанию известной сноровки и ловкости в ...

Скачать
118786
4
0

праведливы соотношения ... Пусть высота тетраэдра равна ... . Тогда его объём равен ... . Воспользуемся вторым законом Ньютона и со- ставим уравнение движения тетраэдра: ... ... где ... - ускорение центра масс тетраэдра. Переходя к пределу (устремляя ... ), получим ... Получим формулу Коши, утверждающую, что напряжения на гранях образуют систему взаимно уравновешенных ...

Скачать
166869
1
15

... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...

Скачать
120331
21
16

... фундамента. 59 Нормативный срок службы водозаборной арматуры, годы: А) 5; В) 10; С) 15; D) 20; E) 25. 60 Нормативный срок службы чугунных радиаторов, годы: А) 5; В) 10; С) 20; D) 30; E) 40. 61 Какой параметр ограничивается во всех инженерных системах? A) давление; B) скорость; C) температура; D) вязкость; E) расход. 62 Какая инженерная система рассчитывается для трех различных ...

0 комментариев


Наверх