Турбулентное движение жидкости

Лекции по гидравлике
Общие сведения о жидкости 1.1. Жидкость как физическое тело Основные физические свойства жидкостей Многокомпонентные жидкости Дифференциальное уравнение равнове­сия жидкости Равновесие твёрдого тела в жидкости Уравнение неразрывности для элементарной струйки жидкости Динамика идеальной жидкости Интерпретация уравнения Бернулли Уравнение Бернулли для потока реальной жидкости Потери напора по длине Экспериментальное изучение движения жидкости Турбулентное движение жидкости Кавитационные режимы движения жидкости Истечение жидкости через насадки Неустановившееся истечение жидкости из резервуаров Движение жидкостей в трубопроводах Сложные трубопроводы Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения Скорость распространения упругих волн в трубопроводе Движкние газа по трубам 10.1. Основные положения и задачи Безнапорное движение жидкости Движение жидкости в безнапорных (самотёчных) трубопроводах Движение вязкопластических жидкостей в трубах Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях Элементы теории подобия
191065
знаков
4
таблицы
84
изображения

6.3. Турбулентное движение жидкости

Структура турбулентного потока. Отличи­тельной особенностью турбулентного движения жидкости является хаотическое движение час­тиц в потоке. Однако при этом часто можно на­ блюдать и некоторую закономерность в таком

движении. С помощью термогидрометра, прибора позволяющего фиксировать изменение скорости в точке замера, можно снять кривую скорости. Если выбрать интервал времени достаточной продолжительности, то окажется, что колебания скорости наблюдаются око­ло некоторого уровня и этот уровень сохраняется постоянным при выборе различных ин­тервалов времени. Величина скорости в данной точке в данный момент времени носит на­звание мгновенной скорости. График изменения мгновенной скорости во времени u(t) представлена на рисунке. Если выбрать на кривой скоростей некоторый интервал времени и провести интегрирование кривой скоростей, а затем найти среднюю величину, то такая величина носит название осреднённой скорости

Разница между мнгновенной и осреднённой скоростью называется скоростью пуль­сации и'.

Если величины осреднённых скоростей в различные интервалы времени будут оставаться постоянными, то такое турбулентное движение жидкости будет устано­вившемся.

При неустановившемся турбулентном движении  жидкости величины щсреднённых скоростей меняются во времени

Пульсация жидкости является причиной перемешивания жидкости в потоке. Интен­сивность перемешивания зависит, как известно, от числа Рейнольдса, т.е. при сохранении прочих условий от скорости движения жидкости. Таким образом, в конкретном потоке

жидкости (вязкость жидкости и размеры сечения определены первичными условиями) характер её движения зависит от скоро­сти. Для турбулентного потока это имеет решающее значение. Так в периферийных слоях жидкости скорости всегда будут ми­нимальными, и режим движения в этих слоях естественно будет  ламинарным. Увеличение скорости до критического значения приведёт к смене режима движения жидкости с ламинарного ре­жима на турбулентный режим. Т.е. в реальном потоке присутствуют оба режима как ла­минарный, так и турбулентный.

Таким образом, поток жидкости состоит из ламинарной зоны (у стенки канала) и турбулентного ядра течения (в центре) и, поскольку скорость к центру турбулентного по-

тока нарастает интенсивно, то толщина периферийного ламинарного слоя чаще всего не­значительна, и, естественно, сам слой называется ламинарной плёнкой, толщина которой  зависит от скорости движения жидкости.

Гидравлически гладкие и шероховатые трубы. Состояние стенок трубы в значитель­ной мере влияет на поведение жидкости в турбу­лентном потоке. Так при ламинарном движении  жидкость движется медленно и плавно, спокойно обтекая на своём пути незначительные препятст­вия. Возникающие при этом местные сопротивления настолько ничтожны, что их величи­ной можно пренебречь. В турбулентном же потоке такие малые препятствия служат ис­точником вихревого движения жидкости, что приводит к возрастанию этих малых мест­ных гидравлических сопротивлений, которыми мы в ламинарном потоке пренебрегли. Та­кими малыми препятствиями на стенке трубы являются её неровности. Абсолютная вели­чина таких неровностей зависит от качества обработки трубы. В гидравлике эти неровно­сти называются выступами шероховатости, они обозначаются литерой.

В зависимости от соотношения толщины ламинарной плёнки и величины выступов шероховатости будет меняться характер движения жидкости в потоке. В случае, когда толщина ламинарной плёнки велика по сравнению с величиной выступов шероховатости (, выступы шероховатости погружены в ламинарную плёнку и турбулентному ядру течения они недоступны (их наличие не сказывается на потоке). Такие трубы называются гидравлически гладкими (схема 1 на рисунке). Когда размер выступов шероховатости превышает толщину ламинарной плёнки, то плёнка теряет свою сплошность, и выступы шероховатости становятся источником многочисленных вихрей, что существенно сказы­вается на потоке жидкости в целом. Такие трубы называются гидравлически шероховаты­ми (или просто шероховатыми) (схема 3 на рисунке). Естественно, существует и проме­жуточный вид шероховатости стенки трубы, когда выступы шероховатости становятся соизмеримыми с толщиной ламинарной плёнки(схема 2 на рисунке). Толщину ла-

минарной плёнки можно оценить исходя из эмпирического уравнения

Касательные напряжения в турбулентном потоке. В турбулентном потоке величина касательных напряжений должна быть больше, чем в ламинарном, т.к. к касательным на­пряжениям, определяемым при перемещении вязкой жидкости вдоль трубы следует доба­вить дополнительные касательные напряжения, вызываемые перемешиванием жидкости.

Рассмотрим этот процесс подробнее. В турбулентном потоке вместе с перемещением частицы жидкости вдоль оси трубы со скоростью и эта же частица жидкости одновремен­но переносятся в перпендикулярном направлении из одного слоя жидкости в другой со скоростью равной скорости пульсации и . Выделим элементарную площадку dS, распо­ложенную параллельно оси трубы. Через эту площадку из одного слоя в другой будет пе­ремещаться жидкость со скоростью пульсации при этом расход жидко­сти составит:

Масса жидкости dMr, переместившаяся через площадку за время dt будет:

За счёт горизонтальной составляющей скорости пульсации и'х эта масса получит в новом слое жидко­сти приращение количества движения dM,

 Еслипереток жидкости осуществлялся в слой, двигающийся с большей скоростью, то, следовательно, приращение количества движения будет соответствовать импульсу силы dT, направленной в сторону противоположную движению жидкости, т.е. скорости и'х:

Тогда:

^

Для осреднённых значений скорости:

Следует отметить, что при перемещении частиц жидкости из одного слоя в дру­гой они не мгновенно приобретают скорость нового слоя, а лишь через некоторое вре­мя; за это время частицы успеют углубиться в новый слой на некоторое расстояние /, называемое длиной пути перемешивания.

Теперь рассмотрим некоторую частицу жидкости находящуюся в точке А Пусть эта частица переместилась в соседний слой жидкости и углубилась в него на длину пу­ти перемешивания, т.е. оказалась в точке В. Тогда расстояние между этими точками будет равно /. Если скорость жидкости в точке А будет равна и, тогда скорость в точке

В будет равна.

Сделаем допущения, что пульсации скорости пропорциональны приращению скорости объёма жидкости. Тогда:

Полученная зависимость носит название формулы Прандтля и является за­коном в теории турбулентного трения так же как закон вязкостного трения для ла­минарного движения жидкости. , Перепишем последнюю зависимость в форме:

Здесь коэффициент , называемый коэффициентом турбулентного обмена

играет роль динамического коэффициента вязкости, что подчёркивает общность основ теории Ньютона и Прандтля. Теоретически полное касательное напряжение должно быть равно:

*  '

но первое слагаемое в правой части равенства мало по сравнению со вторым и его величиной можно пренебречь

Распределение скоростей по сечению турбулентного потока. Наблюдения за величи­нами осреднённых скоростей в турбулентном потоке жидкости показали, что эпюра осреднённых скоростей в турбулентном потоке в значительной степени сгла­жена и практически скорости в разных точках живого  сечения равны средней скорости. Сопоставляя эпюры скоростей турбулентного потока (эпюра 1) и ламинар­ного потока позволяют сделать вывод о практически равномерном распределении скоро­стей в живом сечении. Работами Прандтля было установлено, что закон изменения каса­тельных напряжений по сечению потока близок к логарифмическому закону. При некото­рых допущениях: течение вдоль бесконечной плоскости и равенстве касательных напря­жений во всех точках на поверхности

После интегрирования:

Последнее выражение преобразуется к следующему виду:

Развивая теорию Прандтля, Никурадзе и Рейхардт предложили аналогичную зависи­мость для круглых труб.

Потери напора на трение в турбулентном потоке жидкости. При исследовании во­проса об определении коэффициента потерь напора на трение в гидравлически гладких трубах можно прийти к мнению, что этот коэффициент целиком зависит от числа Рей-нольдса. Известны эмпирические формулы для определения коэффициента трения, наибо­лее широкое распространение получила формула Блазиуса:

По данным многочисленных экспериментов формула Блазиуса подтверждается в пределах значений числа Рейнольдса отдо 1-10 5. Другой распространённой эмпири­ческой формулой для определения коэффициента Дарси является формула П.К. Конакова:

Формула П.К. Конакова имеет более широкий диапазон применения до значений числа Рейнольдса в несколько миллионов. Почти совпадающие значения по точности и области применения имеет формула Г.К. Филоненко:

Изучение движения жидкости по шероховатым трубам в области, где потери напора определяются только шероховатостью стенок труб, и не зависят от скорости

движения жидкости, т.е. от числа Рейнольдса осуществлялось Прандтлем и Никурадзе. В результате их экспериментов на моделях с искусственной шероховатостью была установ­лена зависимость для коэффициента Дарси для этой так называемой квадратичной облас­ти течения жидкости:

Для труб с естественной шероховатостью справедлива формула Шифринсона

где:  - эквивалентная величина выступов шероховатости. Ещё более сложная обстановка связана с изучением движения жидкости в переход­ной области течения, когда величина потерь напора зависит от обоих факторов,

 Наиболее приемлемых результатов добились Кёллебрук - Уайт:

Несколько отличная формула получена Н.З. Френкелем:

Формула Френкеля хорошо согласуется с результатами экспериментов других авто­ров с отклонением (в пределах 2 - 3%). Позднее А.Д. Альтшуль получил простую и удоб­ную для расчётов формулу:

Обобщающие работы, направленные на унификацию результатов экспериментов, проведенных разными авторами, ставили перед собой цель связать воедино исследования потоков жидкости в самых разнообразных условиях. Результаты представлялись в графи-

ческой форме (широко известны графики Никурадзе, Зегжда, Мурина, опубликованные в специальной литературе и учебных пособиях). Графики Никурадзе построены для труб с искусственной шероховатостью, графики Зегжда для прямоугольных лотков с искусст­венно приданной равномерной шероховатостью. Наиболее часто употребляемыми явля­ются графики построенные Никурадзе.

На графике зависимости легко различимы все четыре области течения жидкости.

I ламинарное течение жидкости (прямая А),

II турбулентное течение жидкости в гидравлически гладких трубах (прямая В),

III переходная область течения жидкости,

IV квадратичная область течения жидкости,


Информация о работе «Лекции по гидравлике»
Раздел: Физика
Количество знаков с пробелами: 191065
Количество таблиц: 4
Количество изображений: 84

Похожие работы

Скачать
124283
0
0

... и никто в России не отдавал себе отчета и не имел ясного представления о том, как работает вообще мировая политическая мысль и каким образом вообще совершаются мировые события. Дипломатия, политика в лучшем случае рисовались как система известных навыков и приемов, присущих дипломатическим канцеляриям. Оценка дипломатического таланта и умения сводилась к признанию известной сноровки и ловкости в ...

Скачать
118786
4
0

праведливы соотношения ... Пусть высота тетраэдра равна ... . Тогда его объём равен ... . Воспользуемся вторым законом Ньютона и со- ставим уравнение движения тетраэдра: ... ... где ... - ускорение центра масс тетраэдра. Переходя к пределу (устремляя ... ), получим ... Получим формулу Коши, утверждающую, что напряжения на гранях образуют систему взаимно уравновешенных ...

Скачать
166869
1
15

... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...

Скачать
120331
21
16

... фундамента. 59 Нормативный срок службы водозаборной арматуры, годы: А) 5; В) 10; С) 15; D) 20; E) 25. 60 Нормативный срок службы чугунных радиаторов, годы: А) 5; В) 10; С) 20; D) 30; E) 40. 61 Какой параметр ограничивается во всех инженерных системах? A) давление; B) скорость; C) температура; D) вязкость; E) расход. 62 Какая инженерная система рассчитывается для трех различных ...

0 комментариев


Наверх