Движкние газа по трубам 10.1. Основные положения и задачи

Лекции по гидравлике
Общие сведения о жидкости 1.1. Жидкость как физическое тело Основные физические свойства жидкостей Многокомпонентные жидкости Дифференциальное уравнение равнове­сия жидкости Равновесие твёрдого тела в жидкости Уравнение неразрывности для элементарной струйки жидкости Динамика идеальной жидкости Интерпретация уравнения Бернулли Уравнение Бернулли для потока реальной жидкости Потери напора по длине Экспериментальное изучение движения жидкости Турбулентное движение жидкости Кавитационные режимы движения жидкости Истечение жидкости через насадки Неустановившееся истечение жидкости из резервуаров Движение жидкостей в трубопроводах Сложные трубопроводы Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения Скорость распространения упругих волн в трубопроводе Движкние газа по трубам 10.1. Основные положения и задачи Безнапорное движение жидкости Движение жидкости в безнапорных (самотёчных) трубопроводах Движение вязкопластических жидкостей в трубах Гидравлическая теория смазки 13.1. Ламинарное движение жидкости в узких щелях Элементы теории подобия
191065
знаков
4
таблицы
84
изображения

10. Движкние газа по трубам 10.1. Основные положения и задачи

Основной отличительной особенностью движения газа по трубам от движения ка­пельных жидкостей заключается в том, что капельные жидкости характеризуются весьма малой сжимаемостью, а их вязкость практически не зависит от давления. По этой причине для решения большинства практических задач капельные жидкости можно считать не сжимаемыми, что позволяет значительно упростить уравнения движения такой жидкости. При движении газа таких допущений делать нельзя. Поскольку изучение общих решений уравнений газодинамики не является предметом настоящего курса, рассмотрим лишь ча­стные задачи, встречающиеся в практике работы специалистов горных отраслей промыш­ленности. К числу таких первоочередных задач относится изучение движения газов, включая воздух по газопроводам (воздуховодам).

Газ двигается по газопроводу при переменном давлении, т.к. давление изменяется вдоль длины газопровода из-за неизбежных потерь напора по длине трубопровода. По этой причине плотность газа и его вязкость являются величинами переменными и неоди­наковы в различных сечениях газопровода. Рассмотрим наиболее простой случай газопро­вода (воздуховода) собранного из труб одинакового диаметра (простой газопровод S = const) при установившемся движении газа. Тогда в соответствии с уравнением нераз­рывности потока газа массовый расход газа вдоль газопровода является величиной посто­янной= const. При этом объёмный расход газа будет меняться от одного сечения га­зопровода к другому, т.к. плотность газа зависит от давления, которое по длине газопро­вода меняется.

Тогда скорость движения газа также будет меняться вдоль длины газопровода:

При этом должна изменяться и температура газа по длине газопровода, и, как след­ствие, также и вязкость газа. Однако для решения практических задач движение газа по трубопроводу можно считать изотермическим (небольшие скорости движения, теплоизо­ляция газопровода, небольшие перепады давления). Это допущение не приведет к серьёз­ным погрешностям в расчётах, но оно позволяет пренебречь изменением вязкости газа при незначительных колебаниях температуры газа в газопроводе. Т.е. полагаем, что в га­зопроводе соблюдается условие: Т = const и= const. При таких условиях будет посто-

янным для всего потока и число Рейнольдса, и как следствие будут одинаковым коэффи­циенты трения и гидравлических сопротивлений по длине потока.

Отметим, что в последнем выражении все величины, входящие в правую часть ра­венства являются величинами постоянными, отсюда: Re = const и /I = const. По этой причине для определения величины потерь напора и расхода газа можно воспользоваться обычным уравнением Бернулли.

i %

10.2. Основные уравнения газодинамики для установившегося движения газа в простом газопроводе

Запишем уравнение Бернулли в дифференциальной форме:

Последний член уравнения весь мал и его величиной можно пренебречь, тогда для горизонтального газопровода (z = const) можно записать:

Подставив в последнее уравнение значение средней скорости движения газа, выра­зив её через массовый расход, получим:

По принятым выше условиям процесс движения газа по газопроводу является изо­термическим, тогда подставив в последнее уравнение значение из уравнения Бойля-Мариотта:

 , получим:

Решая последнее уравнение, получим основные расчётные формулу для определения потерь давления в газопроводе и формулу для определения массового расхода газа в газо­проводе.

 >

Величина коэффициента трения Л определяется по формулам для жидкости в зави­симости от режима её движения или же можно воспользоваться эмпирической формулой ВННИИГаза:

* ^

 *

где d- диаметр газопровода в сантиметрах.


Информация о работе «Лекции по гидравлике»
Раздел: Физика
Количество знаков с пробелами: 191065
Количество таблиц: 4
Количество изображений: 84

Похожие работы

Скачать
124283
0
0

... и никто в России не отдавал себе отчета и не имел ясного представления о том, как работает вообще мировая политическая мысль и каким образом вообще совершаются мировые события. Дипломатия, политика в лучшем случае рисовались как система известных навыков и приемов, присущих дипломатическим канцеляриям. Оценка дипломатического таланта и умения сводилась к признанию известной сноровки и ловкости в ...

Скачать
118786
4
0

праведливы соотношения ... Пусть высота тетраэдра равна ... . Тогда его объём равен ... . Воспользуемся вторым законом Ньютона и со- ставим уравнение движения тетраэдра: ... ... где ... - ускорение центра масс тетраэдра. Переходя к пределу (устремляя ... ), получим ... Получим формулу Коши, утверждающую, что напряжения на гранях образуют систему взаимно уравновешенных ...

Скачать
166869
1
15

... самоиндукции и экстратоки замыкания и размыкания. Открытие явления электромагнитной индукции сразу же приобрело огромное научное и практическое значение; оно легло в основу электротехники. Работам Фарадея в области электричества положило начало исследование так называемых электромагнитных вращений. Из серии опытов Эрстеда, Араго, Био, Савара, проведенных в 1820 г., стало известно не только об ...

Скачать
120331
21
16

... фундамента. 59 Нормативный срок службы водозаборной арматуры, годы: А) 5; В) 10; С) 15; D) 20; E) 25. 60 Нормативный срок службы чугунных радиаторов, годы: А) 5; В) 10; С) 20; D) 30; E) 40. 61 Какой параметр ограничивается во всех инженерных системах? A) давление; B) скорость; C) температура; D) вязкость; E) расход. 62 Какая инженерная система рассчитывается для трех различных ...

0 комментариев


Наверх