2.1. Спектр оператора А = Р1 + Р2. Изучим оператор Р1 + Р2 в сепарабельном гильбертовом пространстве.

Теорема 2.1. Самосопряженный оператор А представим в виде суммы двух ортопроекторов А = Р1 + Р2 тогда и только тогда, когда * Алгебры и их применение(А) = [0, 2] и пространство Н можно разложить в ортогональную сумму инвариантных относительно А пространств

Н = Н0 * Алгебры и их применение Н1* Алгебры и их применение Н2 * Алгебры и их применение(* Алгебры и их применение(С2* Алгебры и их применениеL2((0, * Алгебры и их применение), dρк))) (2.1.)

и меры ρк инвариантны относительно преобразования 1+х → 1-х.

Доказательство. Пусть А = Р1 + Р2. Н0=Н0,0 , Н1=Н1,0* Алгебры и их применениеН0,1 , Н2=Н1,1

Поставим в соответствие φ→ε cosφ, где φ* Алгебры и их применение (0, * Алгебры и их применение). Тогда, как было найдено выше, спектр * Алгебры и их применение(А) * Алгебры и их применение [0, 2] и Н можно разложить (опираясь на спектральную теореме 2.3. главы II) в ортогональную сумму (2.1.)

Н = Н0 * Алгебры и их применение Н1* Алгебры и их применение Н2 * Алгебры и их применение(* Алгебры и их применение(С2* Алгебры и их применениеL2((0, 2), dρк)))

Поскольку собственные подпространства, соответствующие собственным значениям А 1+ε , 1-ε, 0<ε<1 входят одновременно в спектр и их значения совпадают, то каждая мера ρк (к = 1, 2, …) должна быть инвариантной относительно преобразования 1 + х → 1- х.

Обратно. Пусть имеет место (2.1.) и * Алгебры и их применение(А) * Алгебры и их применение [0, 2]. Тогда зададим ортопроекторы Р1΄ Р2΄ равенствами

Р1΄ = P1* Алгебры и их применениеP2* Алгебры и их применение(* Алгебры и их применение(* Алгебры и их применение* Алгебры и их применениеIк ))

Р2΄ = P2 * Алгебры и их применение (* Алгебры и их применение* Алгебры и их применение* Алгебры и их применениеIк ))

где Pi: Н→Нi (i = 0, 1, 2) ортопроектор, Ik – единичный оператор в L2((0, 2), dρк)). Тогда А =Р1΄ + Р2΄ - самосопряженный оператор, спектр которого содержится в [0, 2], так как Рк΄ (к = 1, 2) является суммой ортопроекторов на взаимно ортогональные пространства.

2.2. Спектр линейной комбинации А = aР1 + bР2 (0<a<b). Рассмотрим теперь случай, когда А = aР1 + bР2 (0<a<b).

Теорема 2.2. Самосопряженный оператор А представим в виде линейной комбинации двух ортопроекторов А = aР1 + bР2, 0<a<b тогда и только тогда, когда * Алгебры и их применение(А) * Алгебры и их применение [0, a] * Алгебры и их применение[b, a+b] и Н можно представить в виде ортогональной суммы инвариантных относительно А пространств

Н = Н0* Алгебры и их применение Нa * Алгебры и их применениеНb* Алгебры и их применениеНa+b* Алгебры и их применение (* Алгебры и их применение(С2* Алгебры и их применениеL2([0, a] * Алгебры и их применение[b, a+b], dρк)))) (2.2.)

и меры ρк инвариантны относительно преобразования х→a+b.

Доказательство. Пусть А = aР1 + bР2 (0<a<b). Пусть Н0=Н0,0, На=Н0,1, Нb=Н1,0 , Нa+b=Н1,1. Так как * Алгебры и их применение(А) * Алгебры и их применение [0, a] * Алгебры и их применение[b, a+b] и собственные подпространства, отвечающие собственным значениям оператора А входят в Н одновременно (причем их размерности совпадают) то аналогично теореме 2.1. получаем

Н = Н0* Алгебры и их применение Нa * Алгебры и их применениеНb* Алгебры и их применениеНa+b* Алгебры и их применение (* Алгебры и их применение(С2* Алгебры и их применениеL2([0, a] * Алгебры и их применение[b, a+b], dρк))))

где меры ρк (к = 1, 2, …) инвариантны относительно преобразования х → a+b-х.

Обратно, пусть * Алгебры и их применение(А) * Алгебры и их применение [0, a] * Алгебры и их применение[b, a+b] и имеется разложение Н (2.2.). Тогда зададим Р1 и Р2 следующим образом

P1 = Pa* Алгебры и их применениеPa+b * Алгебры и их применение(* Алгебры и их применение(* Алгебры и их применение* Алгебры и их применениеIк ))

Р2 = Pb * Алгебры и их применениеPa+b (* Алгебры и их применение* Алгебры и их применение* Алгебры и их применениеIк ))

где Рα: Н→Нα , α = a, b, a+b – ортопроекторы, Iк – единичный оператор в L2([0,a] * Алгебры и их применение[b, a+b]). Тогда

А = aР1 + bР2 = aР1* Алгебры и их применение bР2* Алгебры и их применение(a+b)Pa+b * Алгебры и их применение(* Алгебры и их применение(* Алгебры и их применение* Алгебры и их применениеIк )) * Алгебры и их применение

* Алгебры и их применение (* Алгебры и их применение* Алгебры и их применение* Алгебры и их применениеIк ))

ЗАКЛЮЧЕНИЕ

В дипломной работе изучена пара ортопроекторов в сепарабельном гильбертовом пространстве Н, приведено описание всех неприводимых и неэквивалентные *-представления *-алгебры P2 .

P2 = С <p1, p2 | pк2 = pк* =pк>.

А именно: 4 одномерных π0,0(p1) = 0, π0,0(p2) = 0; π0,1(p1) = 0, π0,1(p2) = 1; π1,0(p1) = 1, π1,0(p2) = 0; π1,1(p1) = 1, π1,1(p2) = 1.

И двумерные: * Алгебры и их применение , * Алгебры и их применение τ* Алгебры и их применение (0, 1)

Изучен спектр операторов Р1 + Р2, aР1 + bР2 (0<a<b), а также необходимые и достаточные условия представимости самосопряженного оператора А в виде А = Р1 + Р2 и А = aР1 + bР2 (0<a<b).

Список литературы

Ахиезер Н.И., Глазман И.М. Теория линейных операторов в гильбертовом пространстве, М., Наука, 1966.

Березенский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ, К., Выща школа, 1990.

Браттели У., Робинсон Д. Операторные алгебры и квантовая статистическая механика: С*- W* -алгебры. Группы симметрий. Разложение состояний., М., Мир, 1982.

Диксмье Ж. С*-алгебры и их представления. М., Наука, 1974.

Кириллов А.А. Элементы теории представлений. М., Наука, 1978.

Кужель А.В. Алгебры конечного ранга, С. СГУ, 1979.

Ленг С. Алгебра. М., Мир, 1968.

Мерфи Д. С*-алгебры и теория операторов. М., Мир, 1998.

Наймарк М.А. Нормированные кольца. М., Гостехиздат, 1956.

Рудин У. Функциональный анализ. М., Мир, 1975.

NishioK, Linear algebra and its applications 66: 169-176, Elsevier Science Publishing Co., Inc., 1985.

Samoilenko Y.S., Representation theory of algebras, Springer, 1


Информация о работе «* Алгебры и их применение»
Раздел: Математика
Количество знаков с пробелами: 65703
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
69018
1
0

... ;0,0(p2) = P0,0. В силу теоремы 2.8. главы I разложения I, Р1 и Р2 также определяются однозначно. § 2. Два ортопроектора в сепарабельном гильбертовом пространстве 2.1. Неприводимые *-представления *-алгебры P2 . Пусть А = Р1 - Р1┴ = 2Р1 – I и В = Р2 – Р2┴ = 2Р2 – I. Тогда А2 = I , В2 = I. Следовательно А и В самосопряженные унитарные операторы в Н. Положим U=АВ, тогда U-1=ВА и А-1UА ...

Скачать
75806
4
238

... для того, чтобы показать школьникам образец современной математической теории. 2.2.3.2. ПРОГРАММА И СОДЕРЖАНИЕ ЗАНЯТИЙ ФАКУЛЬТАТИВНОГО КУРСА «ЭЛЕМЕНТЫ СОВРЕМЕННОЙ АЛГЕБРЫ» В качестве экспериментальной работы мы предлагаем изучение элементов современной алгебры в рамках факультативного курса по математике. Нами была разработана программа факультативного курса «Элементы современной алгебры» и ...

Скачать
10756
9
3

... угодно сложные в логическом отношении схемы, можно строить, используя два приема: 1.  последовательное соединение элементов; 2.  перестановка входов элементов. Этим двум физическим приемам в алгебре логики соответствуют: 1.  принцип суперпозиции (подстановка в функцию вместо ее аргументов других функций); 2.  подстановка аргументов (изменение порядка записи аргументов функций или замена ...

Скачать
66655
0
0

... 4. Бинарные отношения. Математика как наука отражает мир взаимодействующих простых и сложных объектов (вещей, явлений, процессов). Абстрагируясь от реальности, математика рассматривает унарные, бинарные и другие отношения. В вопросе требуется рассмотреть бинарные отношения, их свойства и особо обратить внимание на отношение эквивалентности, заданного на одном множестве. Рассмотрим ...

0 комментариев


Наверх