3.4 Определение момента инерции маховика
Для определения момента инерции маховика определяем углы наклона касательных к диаграмме Виттенбауэра Ψmax и Ψmin.
где: wСР =w1 = 6,811/с – угловая скорость кривошипа,
δ=0,04 – коэффициент неравномерности хода.
0,0916
Ψmax=5,23o
0,0846
Ψmin=4,83o
К Диаграмме Виттенбауэра проводим касательные под найденными углами к горизонтальной оси JПР. Эти касательные пересекают ось ординат в точках а и в. замеряем отрезок ав.
Момент инерции маховика:
По найденному моменту инерции маховика определяем его размеры. Маховик конструктивно выполняем в виде сплошного чугунного диска диаметром – d и шириной – в. Момент инерции сплошного диска относительно его оси равен:
где: g = 7200 кг/м2 – удельная плотность чугуна,
d – диаметр диска,
в - ширина диска.
Примем , тогда:
Откуда:
dо = в = 0,17256 м – диаметр отверстия под вал.
4. Синтез зубчатого механизма
4.1 Геометрический синтез зубчатого зацепления
Задачей геометрического синтеза зубчатого зацепления является определение его геометрических размеров и качественных характеристик (коэффициентов перекрытия, относительного скольжения и удельного давления), зависящих от геометрии зацепления.
4.2 Определение размеров внешнего зубчатого зацепления
Исходные данные:
Z4 = 12 – число зубьев шестерни,
Z5 = 30 – число зубьев колеса,
m2 = 10 – модуль зацепления.
Шаг зацепления по делительной окружности
3,14159 · 10 = 31,41593 мм
Радиусы делительных окружностей
10 · 12 / 2 = 60 мм
10 · 30 / 2 = 150 мм
Радиусы основных окружностей
60 · Соs20o = 60 · 0,939693 = 56,38156 мм
150 · Соs20o = 150 · 0,939693 = 140,95391 мм
Коэффициенты смещения
Х1 – принимаем равным 0,73 т. к. Z4 =12
Х2 – принимаем равным 0,488 т. к. Z5 =30
Коэффициенты смещения выбраны с помощью таблиц Кудрявцева.
0,73 + 0,488 = 1,218
Толщина зуба по делительной окружности
31,41593 / 2 + 2 · 0,73 · 10 · 0,36397 = 21,02192 мм
31,41593 / 2 + 2 · 0,488 · 10 · 0,36397 = 19,26031 мм
Угол зацепления
Для определения угла зацепления вычисляем:
1000 · 1,218 / (12 + 30) = 29
С помощью номограммы Кудрявцева принимаем =26о29'=26,48о
Межосевое расстояние
(10·42/2) · Соs20o / Cos26,48o=210·0,939693 / 0,89509 = 220,46446 мм
Коэффициент воспринимаемого смещения
(42 / 2) · (0,939693 / 0,89509 – 1) = 21 · 0,04983 = 1,04645
Коэффициент уравнительного смещения
1,218 – 1,04645 = 0,17155
Радиусы окружностей впадин
10 · (12 / 2 – 1 – 0,25 + 0,73) = 54,8 мм
10 · (30 / 2 – 1 – 0,25 + 0,488) = 142,38 мм
Радиусы окружностей головок
10 · (12 / 2 + 1 + 0,73 – 0,17155) =75,5845 мм
10 · (30 / 2 + 1 + 0,488 – 0,17155) =163,1645 мм
Радиусы начальных окружностей
56 · 0,939693 / 0,89509 = 62,98984 мм
150 · 0,939693 / 0,89509 = 157,47461 мм
Глубина захода зубьев
(2 · 1 – 0,17155) · 10 = 18,2845 мм
Высота зуба
18,2845 + 0,25 · 10 = 20,7845 мм
Проверка:
1.
62,98984 + 157,47461 = 220,46445
условие выполнено
2.
220,46446 – (54,8 + 163,1645) = 0,25 · 10
220,46446 – 217,9645 = 2,5
условие выполнено
3.
220,46446 – (134,176 + 75,5845) = 0,25 · 10
220,46446 – 217,9645 = 2,5
условие выполнено
4.
220,46446 – (60 + 150) = 1,04645 · 10
220,46446 – 210 = 10,4645
условие выполнено
... механизма для обеспечения эффективного перехода на различные способы транспортирования в зависимости от свойств материала и выполняемой технологической операции. Разработке методов кинематического анализа механизмов транспортирования ткани швейных машин и соответствующего этой задаче алгоритмического и программного обеспечения посвящены работы. [67],[71],[72]. В работе Ю.Ю.Щербаня и В.А.Горобца ...
... А. Черкудиновым (1959 г.), отразили состояние теории современного учения о механизмах. Одновременно И. И. Артоболевский начинает исследования в области теории механизмов машин автоматического действия: гидравлических, пневматических и гидропневматических. Для современных машин характерны вибрационные явления и существенное изменение массы в процессе работы. Чтобы учесть эти факторы, в большинстве ...
... успешному развитию у детей процессов пространственного анализа и синтеза. Заключение В данной работе были рассмотрены психологические условия коррекции нарушений пространственного анализа и синтеза у детей с психомоторными недостатками при помощи физических упражнений. В настоящее время внимание значительной части педагогов, психологов и социальных работников привлечено к ...
... находятся в слове. Для реализации основных направлений были подобраны специальные приемы и упражнения. Глава III ФОРМИРОВАНИЕ ЗВУКОСЛОГОВОГО АНАЛИЗА И СИНТЕЗА У МЛАДШИХ ШКОЛЬНИКОВ С ФОНЕТИКО-ФОНЕМАТИЧЕСКИМ НЕДОРАЗВИТИЕМ РЕЧИ 3.1 Динамика развития звукослогового анализа и синтеза у учащихся 1 класса После проведения серии коррекционно - развивающих занятий, был сделан второй контрольный ...
0 комментариев