3.2 Поняття інтервальної оцінки. Інтервальні оцінки параметрів нормального розподілу
Обчислена на основі вибірки оцінка є лише наближенням до невідомого значення параметра навіть у тому випадку, коли ця оцінка заможна, незміщена й ефективна. Виникає питання: не можна чи зазначити таке А, для якого з заздалегідь заданої близької до одиниці імовірністю 1 - α гарантувалося б виконання нерівності: |-| < ∆, або інакше, для котрого
(3.2.1)
Якщо таке А існує, то інтервал (-∆, +∆) називають іньервальної оцінкою параметра 9, або довірчим інтервалом; -∆, + ∆ — нижньої і верхньої довірчими границями; ∆ — помилкою оцінки , 1-α — надійністю інтервальної оцінки, або довірчою імовірністю. Вибір довірчої імовірності визначається конкретними умовами; звичайно використовуються значення 1 - α, рівні 0,90; 0,95; 0,99.
Оцінка , будучи функцією випадкової вибірки, є випадковим розміром, ∆ також випадкова: її значення залежить від імовірності 1 - α і, як правило, від вибірки. Тому довірчий інтервал випадковий і вираження (3.2.1) варто читати так: «Інтервал (-∆, +∆ накриє параметр з імовірністю 1 — α», а не так: «Параметр потрапить у інтервал (-∆, +∆ з імовірністю 1 - α».
У формулі (3.2.1) границі довірчого інтервалу симетричні щодо крапкової оцінки. Однак не завжди вдасться побудувати інтервал, що володіє такою властивістю. Для одержання довірчого інтервала найменшої довжини при заданому об'ємі виборки п і заданої довірчої імовірності 1 - а в якості оцінки параметра варто брати ефективну або асимптотично ефективну оцінку.
Існує два підходи до побудови довірчих інтервалів.
Перший підхід, якщо його вдасться реалізувати, дозволяє будувати довірчі інтервали при кожному кінцевому об'ємі вибірки п. Он заснований на доборі такої функції ψ (,), називаної надалі статистикою, щоб:
її закон розподілу був відомий і не залежав від ;
функція ψ(,) була безупинної і строго монотонної по .
Задавшись довірчою імовірністю 1- α, знаходять двосторонні критичні границі , що відповідають імовірності а. Тоді з імовірністю 1 — α виконується нерівність І
(3.2.2)
Вирішивши цю нерівність щодо 0, знаходять границі довірчого інтервалу для . Якщо щільність розподілу статистики в ψ(,) симетрична щодо осі 0у, то довірчий інтервал симетричний щодо .
Другий підхід, що одержав назву асимптотичного підходу, більш універсальний; однак він використовує асимптотичні властивості крапкових оцінок і тому придатний лише при досить великих об'ємах вибірки.
Розглянемо перший підхід на прикладах довірчого оцінювання параметрів нормального розподілу.
Інтервальна оцінка математичного чекання при відомій дисперсії. Отже, Х~ N (а, σ), причому значення параметра а не відомо, а значення дисперсії а2 відомо.
При Х~ N (а, σ) ефективною оцінкою параметра а є X, при цьому X ~ N(a,σ а/√п). Статистика має розподіл N(0;1) незалежно від значення параметра а і як функція параметра а безупинна і строго монотонна. Отже, з обліком нерівності (3.2.2) і симетричності двосторонніх критичних границь розподілу y(0; 1) будемо мати:
Вирішуючи нерівність щодо а, одержимо, що з імовірністю 1 - α виконується нерівність
(3.2.3)
при цьому
(3.2.4)
що відповідає результату (6.1.23); число иа знаходять з умови Ф(uа) = (1-α)/2.
Зауваження. Якщо п велике, оцінку (3.2.3) можна використовувати і при відсутності нормального розподілу розміру X, тому що в силу наслідку з центральної граничної теореми при випадковій вибірці великого об'єму п
Зокрема, якщо Х = ц, де ц - випадкове число успіхів у великому числі п випробувань Бернуллі, то
і з імовірністю ≈ 1 - α для імовірності р успіху в одиничному випробуванні виконується нерівність
(3.2.5)
Замінюючи значення p і q=1-pn лівій і правій частинах нерівності (3.2.4) їхніми оцінками і , що припустимо при великому п, одержимо наближений довірчий інтервал для імовірності р:
(3.2.6)
Приклад 3.2.1 Фірма комунального господарства бажає на основі вибірки оцінити середню квартплату за квартири визначеного типу з надійністю не менше 99% і погрішністю, меншої 10 д.е. Припускаючи, що квартплата має нормальний розподіл із середнім квадратичнім відхиленням, що не перевищує 35 д.е., знайдіть мінімальний об’єм вибірки.
Вирішення. За умовою потрібно знайти таке п, при якому , де а і Х- генеральна і вибіркова середні.
Прирівнявши 1 - α = 0,99, по табл. П. 4.1 знайдемо число иа, при якому Ф() = (1 - α)/2 = 0,495; и0.01= 2,6. При ∆ =10 і α = 35 із формули (3.2.4) одержимо п == 82,81. Але тому що з ростом 1 - α і зменшенням ∆ зростає п, то п > 82,81 і птin = 83 (звичайно, при зменшенні верхньої границі для про буде зменшуватися і птin). Т
Інтервальна оцінка математичного чекання при невідомій дисперсії. Отже, Х~ N (а, о), причому числові значення ні а, ні α 2 не відомі. По випадковій вибірці знайдемо ефективну оцінку параметра а: і оцінку параметра σ2.
Побудова інтервальної оцінки для а засновано на статистику , що при випадковій вибірці з генеральної сукупності Х~ N (а; σ) має розподіл Стьюдента з (п - 1) ступенем волі незалежно від значення параметра а і як функція параметра а безупинна і строго монотонна.
З обліком нерівності (3.2.2) і симетричності двосторонніх критичних границь розподілу Стьюдента будемо мати:
Вирішуючи нерівність -ta відносно а, одержимо, що з імовірністю 1 - α виконується нерівність
(3.2.7)
і помилка оцінки X при невідомому значенні параметра о2
(3.2.8)
де число знаходять по табл. П. 4.2 при k=n-1 пр = α.
Зауваження. При k=п-1>30 випадковий розмір t(k) має розподіл, близьке до N (0; 1), тому з імовірністю ≈ 1 - α
(3.2.9)
Приклад 3.2.2 Для галузі, що включає 1200 фірм, складені випадкова вибірка з 19 фірм. По вибірці опинилося, що у фірмі в середньому працюють 77,5 чоловік при середньому квадратичному відхиленні s = 25 чоловік. Користуючись 95%-нім довірчим інтервалом, оціните середнє число працюючих у фірмі по всій галузі і загальне число працюючих у галузі. Передбачається, що кількість працівників фірми має нормальний розподіл.
Вирішення. При k = n -1 = 18 і р = α = 1 - 0,95 = 0,05 знайдемо в табл. П. 4.2 t005 = 2,10. Довірчий інтервал (3.2.7) прийме вид: (65,5; 89,5). З імовірністю 95% можна стверджувати, що цей інтервал накриє середнє число працюючих у фірмі по всій галузі. Тоді довірчий інтервал для числа працюючих у галузі в цілому такий: (1200-65,5; 1200-89,5). Т
Інтервальна оцінка дисперсії (середнього квадратичного відхилення) при відомому математичному чеканні. Ефективною оцінкою дисперсії в цьому випадку є .
Використовуються два варіанти інтервальної оцінки для σ2(σ).
... . Поклавши у формулі (4) а = b = 1, дістанемо Нехай маємо скінченну множину, яка містить п елементів. Тоді кількість підмножин цієї множини дорівнює 2n. Наприклад, для множини {a,b,c} маємо Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ § 1. Про предмет теорії ймовірностей До цього часу розглядалися задачі, в яких результат дії був однозначно ...
... поданих на рис. 1.5 методик. Відповідно до цієї методики аналіз інвестиційної привабливості підприємства здійснюється в послідовності, наведеній на рис. 1.6. Аналіз і оцінка інвестиційної привабливості підприємства на основі аналізу фінансових показників передбачають дослідження фінансово-економічних процесів на підприємстві (табл. 1.2). Таблиця 1.2 Цілі аналізу фінансово-економічних процесів ...
... і невилучених систематичних складових повної похибки результату вимірювання, її оцінювання проводиться відповідно до методики, викладеної в підп.2.9.4. Оцінка результату і похибки прямих багаторазових вимірювань Постійно зростаючі вимоги до точності прямих вимірювань задовольняються не тільки за рахунок підвищення точності заново створених ЗВТ, але й використанням більш ефективних методів ...
... заційної реструктуризації. Щоб більш результативно запобігати банкрутству, необхідно вирішити завдання запровадження ефективних, адаптованих до вітчизняних умов, механізмів визначення ймовірності банкрутства ще до виникнення явних ознак неплатоспроможності підприємства, а також створити відповідну систему моніторингу роботи підприємств на рівні регіонів. Аналіз літератури показує, що у даний час ...
0 комментариев