8. Знайти всі значення а, для яких існує пара від’ємних чисел х та у, які задовольняють умові
Розв’язання. Нерівність х + 2у > а задає півплощину з "пливучою" межею х + 2у = а. Оскільки очевидно, що а < 0, то система нерівностей задає внутрішню область трикутника ОАВ з координатами вершин О (0; 0), А (0; а), В - рис.1.2.16.
Рис.1.2.16
Все прямі сім’ї прямих проходять через точку М (0;
1). Очевидно початкова система має Розв’язання, якщо прямі сім’ї перетинають вісь абсцис в точках, які лежать між А та О. Для прямої при фіксованому а абсциса точки перетину с віссю х дорівнює . Тоді залишилося вимагати, щоб . Звідси .
Відповідь: .
9. При яких значеннях параметра а рівняння не має розв’язків?
Розв’язання. Розглянемо функції та , які задають: сім’ю "кутів" та сім’ю прямих, які проходять через точку . Оскільки кожен з графіків функцій знаходиться у "русі", то при пошуку їх спільних точок (або умов їх відсутності) виникають ускладнення. Тому спробуємо застосувати такий метод: "зупинимо" один з рухів за допомогою заміни.
Нехай . Тоді і початкове рівняння приймає вигляд . Всі прямі виду проходять через точку . Оскільки положення точки М не зафіксовано, то поворот не формує сім’ю прямих. Однак сама ідея повороту є результативною.
Очевидно ордината точки М завжди від’ємна. За допомогою рис.39 легко побачити, що якщо прямі сім’ї прямих проходять між сторонами кута АМВ , то в цьому і тільки в цьому випадку початкове рівняння має розв’язки.
Рис.1.2.17
Таким чином, кутовий коефіцієнт прямих задовольняє вимозі . Звідси
Відповідь:
1.3 Гомотетія. Стиск до прямої
1. Знайти число розв’язків системи рівнянь ()
Розв’язання. Побудуємо графіки функцій (квадрат зі стороною ) та . Члени сім’ї функцій - гомотетичні кола (з центром гомотетії (0,0)).
Рис.1.3.1
Якщо коло лежить всередині квадрата, то розв’язків немає.
Якщо коло вписане в квадрат, то з’являються розв’язки. В цьому випадку з теореми Піфагора: .
При система немає розв’язків, при система має 4 розв’язки. Далі зі збільшенням () кожна сторона квадрата має дві спільні точки перетину з колом (всього 8 розв’язків).
При квадрат вписаний в коло, маємо 4 розв’язки. При розв’язків немає. Відповідь: при розв’язків немає, при - 4 розв’язки, при - 8 розв’язків, при - 4 розв’язки, при розв’язків немає.
2. При яких дійсних значеннях система
має 8 різних розв’язків?
Розв’язнання. Побудуємо графіки функцій (ромб зі стороною довжиною ) та . Члени сім’ї функцій - гомотетичні кола (з центром гомотетії (0,0)).
Рис.1.3.2
Знайдемо значення параметра , при якому коло дотикається до ромба.
З прямокутного трикутника (зі сторонами та 1) знайдемо , тоді з трикутника АВС , звідки .
Зі збільшенням система буде мати 8 розв’язків (8 точок перетину кола з ромбом). А при система буде мати 4 розв’язки (4 точки перетину з ромбом). Отже, . Відповідь:
3. Визначити, при яких система рівнянь
має точно два розв’язки.
Розв’язання. Перепишемо систему рівнянь у вигляді
Перше рівняння визначає гомотетичні кола (з центром гомотетії (0,0) та радіусом ). Друге рівняння - об’єднання двох прямих: , . Побудуємо прямі та кола на графіку.
Рис.1.3.3
Система буде мати точно 2 розв’язки, коли коло дотикається двох прямих. Знайдемо параметр . З гіпотенуза , . З , тоді , . Остаточно знаходимо . Відповідь: .
4. Для кожного від’ємного числа розв’язати нерівність .
Розв’язання. Перепишемо нерівність у вигляді . Побудуємо графіки та . Членами сім’ї функцій є гомотетичні півкола (центр гомотетії - точка (0,0)). З нерівності випливає, що півкола повинні лежати вище прямої .
Кутовий коефіцієнт прямої дорівнює -2. Тоді , , із : , .
Рис.1.3.4
, звідки
, .
Розв’язком нерівності для кожного від’ємного числа буде проміжок . Відповідь: .
5. Скільки розв’язків в залежності від має рівняння .
Розв’язання. Перепишемо рівняння у вигляді . Побудуємо графіки функцій (гомотетичні кути з вершиною в точці (2,0)) та . При графіки наведені на рисунку 1.3.5
Рис.1.3.5
З рис.1.3.5 видно, що при спільних точок графіки не мають, рівняння розв’язків немає.
При графіки та наведені на рисунку 1.3.6.
З рис.1.3.6 видно, що при , - 1 розв’язок;
при - 2 точки перетину графіків (2 розв’язки);
при - 3 точки перетину графіків (3 розв’язки);
при - 4 точки перетину графіків (4 розв’язки).
Рис.1.3.6
Відповідь: при , - 1 розв’язок; при - 2 розв’язки; при - 3 розв’язки; при - 4 розв’язки.
6. При яких значеннях криві та мають тільки одну спільну точку?
Розв’язання. Необхідно розв’язати рівняння або . Побудуємо графіки функцій (гомотетичні вітки парабол з центром гомотетії (0,0)) та . ОДЗ рівняння: .
При маємо 1 розв’язок.
Розглянемо випадок дотику двох графіків.
Запишемо рівняння дотичних до кожного з графіків в точці :
, звідси .
Підставляємо в рівняння , тоді , .
Рис.1.3.7
Відповідь: або .
7. При яких значеннях параметра рівняння має єдиний розв’язок, більше одного розв’язку, немає розв’язків?
Розв’язання. Побудуємо графіки функцій та .
Рис.1.3.8
Розв’яжемо рівняння на проміжку для того, щоб знайти точку дотику функцій.
Якщо , то , , при .
Таким чином, при - 1 розв’язок, при - точки перетину графіків є (більше одного розв’язку), при - немає точок перетину графіків (немає розв’язків).
Відповідь: при - 1 розв’язок, при - більше одного розв’язку, при немає розв’язків.
Задачі для самостійної роботи
1. При яких с система має хоча б один розв’язок?
Розв’язання. Спростимо нерівність системи. Маємо . Нехай . Тоді . Звідси з урахуванням того, що , одержимо . Запишемо , тобто . Таким чином, початкова система рівносильна такій:
Графіком першої нерівності цієї системи є півплощина з межею (рис.1.3.9).
Рис.1.3.9
Очевидно система може мати розв’язки, якщо . Тоді рівняння
х 2 + у 2 = с задає сім’ю гомотетичних кіл з центром в точці О (0; 0). Рисунок підказує, що якщо радіус кола не менше довжини відрізка ОМ, тобто відстань від точки О до межі півплощини, то система має розв’язки. Маємо . З . Звідси .
Відповідь: .
2. Скільки розв’язків має система в залежності від параметра а?
Розв’язання. При система розв’язків не має. При фіксованому графіком першого рівняння є квадрат з вершинами (а; 0), (0; - а), (-а; 0), (0; а). Таким чином, членами сім’ї є гомотетичні квадрати (центр гомотетії - точка О (0; 0)).
Якщо квадрат (рис.1.3.10) знаходиться в колі система розв’язків не має.
Рис.1.3.10
Зі збільшенням а (квадрат "роздувається") розв’язки з’являються лише в той момент, коли квадрат буде вписаним в коло. В цьому випадку (а = 1) розв’язків буде чотири. Далі, при кожна сторона квадрата має дві спільні точки з колом, тоді система буде мати вісім розв’язків. При коло буде вписане в квадрат, тобто розв’язків стане знов чотири. Очевидно при система розв’язків не має.
Відповідь: якщо або , то немає розв’язків; якщо або , то розв’язків чотири; якщо , то розв’язків вісім.
3. Знайти всі значення параметра а, при кожному з яких рівняння має рівно вісім розв’язків.
Розв’язання. Маємо , де . Розглянемо функції та . Перша з них задає сім’ю гомотетичних півкіл з центром в О (0; 0), друга - сім’ю прямих, паралельних вісі абсцис.
З рис.1.3.11 видно, що зі збільшенням радіуса півкола зростає число коренів початкового рівняння. Їх буде рівно вісім, якщо .
Рис.1.3.11
Зауважимо, що а не є радіусом півкола, т. як .
Відповідь: або .
... . Лише за наявності відповідної математичної підготовки слід вимагати від учнів запис та формулювання законв заломлення світла. У новій програмі з фізики для 12 – річної школи багато уваги приділено розв’язуванню фізичних задач. Так, підкреслено , що задачі потрібно ефективно використовувати на всіх етапах засвоєння фізичного знання : для розвитку інтересу, творчіх здібностей і мотивації учнів ...
... іну: , де . Двічі диференціюючи цю функцію і підставляючи вирази для похідних у рівняння (11.59), отримаємо крайову задачу з однорідними граничними умовами: , , . (11.71) Постановка задачі Щоб знайти єдиний розв'язок звичайного диференціального рівняння, необхідно задати деякі допоміжні умови, що використовуються для обчислення інтегрування. Для рі ...
... 20 0 Mf 0 0 0 1 0 0 0 0 Отже, х* = (12, 8, 60), L(x*)max = 20. Задача 3 Для задачі побудувати двоїсту, розв’язати і за розв’язком знайти розв’язок двоїстої: Розв’язання: Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею. Економічну інтерпретацію кожної з пари задач розглянемо на прикладі виробничої задачі. Початкова задача: max z ...
... що знаходяться в стані рівноваги. Для одержання остаточних висновків і підвищення вірогідності застосовуються методи математичного аналізу і математичного моделювання. Розділ ІІ 2.1 Міжпредметні зв’язки при розв’язуванні хімічних задач «Рішення задач – визнаний засіб розвитку мислення, яке легко поєднується з іншими засобами і прийомами навчання» (Цитович І.К.). При вивченні курсу хімії ...
0 комментариев