2. неумение применять теоретическую математику на практике

3. преобладание памяти над пониманием

3) Прочность. Данный принцип, чтобы у учащихся на долго сохранялись приобретенные ЗУН- этого не возможно достигнуть без глубокого понимания материала т.е здесь превалирует связь между принципом сознательности и научности, однако для прочного усвоения также необходимо учитывать особенности обучаемых, закономерности, находящиеся в промежутке в зависимости от сохранения и применения. Также можно отметить, что память имеет избирательный характер.

4) Принцип системности и последовательности.

Системность в обучении математики предполагает соблюдение определенного порядка в рассмотрении и изучении фактов и постепенное овладение основными понятиями и положениями школьного курса математики.

Последовательность в обучении математике идет:

а) от простого к сложному

б) от представлений к понятиям

в) от известного к неизвестному

г) от знания к умению, а от него – к навыку.

5) принцип доступности. В данном принципе вытекает из требования учета возрастных особенностей (чтобы 123 и содержание учебного материала были по силам обучающим и составляющими умственному развитию и запасу знания).

Применение: необходимо учитывать следующие условия

от простого к сложному , от легкого к тяжелому (от неизвестного к известному)

6)индивидуальный для успешного обучения необходимо учитывать особенности мышления любого ученика, свойства его памяти, слуха, зрения, его характер и волю.

Методы обучения математики.

Методы подразделяются на общие дидактические и специальные.

Данилов: «Метод- это логический способ передачи учителем ЗУН учащимся» (в данном определении отсутствует о познавательной деятельности)

Ильина: «Метод- это способ с помощью которого учитель руководит познавательной деятельностью учителя» (отсутствует ученик как объект деятельности или учебного процесса)

Метод обучения- это способ передачи знаний и организации познавательной практической деятельности учащихся при котором обучаемые овладевают ЗУН, при этом развивают их способность и формируя их научное мировоззрение.

Существует около 150 определений и 80 классификаций методов обучения.

Методы обучения подразделяются на методы преподавания и методы учения.

Бабанский рассматривает три группы:

методы организации учебной познавательной деятельностью

методы мотивации и стимулирования учебной познавательной деятельностью

методы контроля и самоконтроля за эффективностью учебной познавательной деятельностью

Определение: Общие дидактические методы рассматривают наиболее общие теоретические аспекты организации учебной познавательной деятельности обучаемых.

Объяснительно-индустративную

репродуктивный метод

частично поисковую

проблемную

исследовательский

иногда называют информационно - интуитивно. Для данного метода характерно используется, тем, что учитель посредством слова, наглядности, учебника, показа различной демонстрации передает ученикам готовую информацию, ученики же в силу своей подготовленности усваивают этот материал. Без данного метода затруднительно первоначальное усвоение материала в особенности сложного, при использовании этого метода важно умелое сочетание слов и наглядности.

При данном методе раскрывается формула:

Усвоение = понимание + запоминание

репродуктивный метод, при этом методе формируются ЗУН на основе практического опыта (в форме алгоритмов, решения простейших задач) самого обучаемого.

Овладение = усвоению + применение на практике.

Частично поисковый учитель при изложении материала организует работу учащихся по средствам специально подобранных задач ( вопросы, доказательство теорем т.д. ).

Проблемный метод обучения занимались Махмутов М.И., Матюшкин А.Н., И.Я. Левнер, А.А. Столяр, В.И. Крутич.

Основными компонентами являются проблемная ситуация, учебная проблема, учебная задача.

Щукина: проблемная ситуация- это не соответствие между имеющимися знаниями, опытом и недостаточностью прежних действий, знаний и теми способами, которые необходимы для решения задач.

Под проблемностью понимается система проблемных ситуаций создаваемых учителем с помощью определенных приемов и их средств.

Исследовательский метод- предназначен для развития творческих способностей у учащихся. Учитель ставит перед учащимися определенную учебную проблему, учащийся пытается ее решить. Данный метод используется на факультативных и кружковых занятиях, в частности для математиков. Необходимо заранее предложить определенный набор задач различной степени сложности, для того чтобы учащиеся соответственно своим возможностям выбрать одну из задач и в установленные сроки предоставить решение этих задач.

Специальные методы.

Наблюдение, опыт, сравнение, аналогия, индукция, дедукция, обобщение, анализ, синтез.

Наблюдение- называется метод изучения ,фиксирование свойств и отношений отдельных объектов и явлений окружающего мира, рассматриваемых в их естественных условиях, и в той естественной связи признаков объекта, в какой они существуют в самом объекте.

Опыт- называют метод изучения объектов и явлений, посредством которого мы вмешиваемся в их естественное состояние и развитие, создавая для них искусственные условия, искусственно их расчленяя на части и соединяя с другими объектами и явлениями.

Сравнение - мысленное установление сходства или различия объектов изучения.

Обобщение - выступает как переход от данного множества предметов к рассмотрению более и емкого множества, содержащего данное.

Анализ и синтез- практически неотделимы друг от друга, они сопутствуют друг другу, дополняя друг друга составляя единый аналитико- синтетический метод.

Анализ рассматривался как путь ( метод мышления ) от целого к частям этого целого, а синтез- как путь ( метод мышления) от частей к целому.

Абстрагированию противоположен процесс конкретизации. Конкретизация- это мыслительная деятельность, при которой односторонне фиксируется та или иная сторона объекта изучения, вне связи с другими его сторонами.

Абстрагирование- это мысленное отвлечение от некоторых несуществующих свойств изучаемого объекта и выявления, существенных для данного исследования свойств.

История возникновения МПМ.

Из обширного запаса методико-педагогических знаний и опыта выделен учебный предмет МПМ в педагогическом институте, который можно условно разделить на три раздела.

Общая МПМ ( изучение методов преподавания )

Специальная МПМ ( изучение, учение о функции в школьном курсе математики )

Конкретная МПМ, которая состоит из

а) частных вопросов общей методики (планирование уроков математики в 4 классе)

б) частных вопросов специальной методики (методика преподавали темы «Четырехугольники»).

Различают также методики преподавания пропедевтического (подготовительного) и систематического (основного) курса математики.

Методика формирования методических понятий.

Представление- это наглядный образ предмета или явления возникаемого путем его воспитания в памяти и воображении.

Для представления характерно переход к его высшей ступени познания то есть к образованию понятий. С точки зрения формальной логики мышление характеризуется следующими основными формами:

понятие

умозаключение

суждение.

Для понятия характерным является выделение свойств, при этом общее свойство некоторого объекта могут быть как отличиями так и неотличительными свойствами.

Общее свойства могут быть отличительными для данного объекта если оно отражает его так называемые существенные свойства, которые могут быть его признаками.

Признак является основным для некоторого объекта, если данный признак принадлежит всем объектам рассматриваемого класса.

Признак называется противоречивым, если он не принадлежит не одному объекту рассматриваемого класса.

Признак называется отдельным, если он принадлежит лишь некоторым объектам рассматриваемого класса.

Отношение независимости. Свойства а и б называются независимыми, если объектом некоторого множества принадлежат оба свойства одновременно и отдельно друг от друга.

Отношение необходимости и достаточности. Каждое из двух свойств является необходимым и достаточным условием по отношению друг к другу, если объекту этого множества принадлежат одновременно только эти свойства, при этом одно свойство называется необходимым если существуют объекты имеющие одно из этих свойств, в противном случае рассматривается достаточность.

Отношение несовместимости. Свойства называются несовместимыми, если объект некоторого множества может содержать только свойства одного класса.

Основными характеристиками понятия является:

содержание понятия

объем

связь и отношения данного понятия с другими

Под содержанием понятия понимают совокупность основных признаков существующих характеристик (классов) объекта (явления), возникающих со знанием человека с помощью данного понятия. (для треугольника, прямоугольника, окружности и т.д)

Объем понятия - это количество объектов охватываемых в данном понятии (квадрат, прямоугольник, трапеция, ромб)

Логические операции используемые при работе с понятиями:

ограничение- переход от понятия большего… к понятию меньшего… (от параллелограмма к ромбу)

обобщение- переход от меньшего к большему …, при этом общие понятия называются родовым понятием, менее общее видовым (призма родовое понятие, прямая призма- видовое)

Что значит определить понятие?

Определение понятие- это логическая операция при помощи которой рассказывается содержание вводимого понятия через перечисление существенных признаков.

Существенные признаки понятия- это признаки которые необходимы для характеристики данного объекта при этом возможно, что лишь 1 признак является необходимым, а все ….. , чтобы отличить объекты данного рода от других. Выбор существенного признака для определения объекта может оказаться многозначным.

Различают реальные и номинальные определения.

Реальные определения: отображают существенные признаки предмета и имеют цели отличить определяемые предметы от всех других предметов путем указания его отличительных признаков. Номинальные определения объясняют значение слова и термины обозначают данный объект

Конъюнктивные и дедуктивные. Конъюнкция, когда одно истинно.

Дизъюнкция, либо ложь, либо истина.

Конструктивное определение, определение в котором указывается способ образования объекта (конус, шар, цилиндр).

Рекурсивное определение- это определение в котором указывается некоторые базисные объекты, некоторого класса и правила позволяющие получить новые объекты этого же класса.

Остенсивное - это определение значение слов путем непосредственного показа, демонстрации предметов, которое обозначается этими словами.

Определение через отрицание- это когда отрицаются известные определения, чтобы получить новое определение (натуральное, отрицательное, рациональное, иррациональное)

Определение через абстракцию- это, когда определение того или иного объекта через другой вид невозможно либо трудно осуществимо (множество, число, величина, точка).

Аксиоматический- это когда определение понятие дается через аксиому (прямая, точка, плоскость)

Требования к определениям

Определение должно быть соразмерным, то есть ……… определяемого и определяющегося понятия должны быть равные.

Н-р: квадратом наз-ся прямоугольный четырехугольник.

2. Определение не должно включать в себя порочного круга ( тавтология ) то есть в качестве определяющего понятия, не должно браться понятие, которое само определяется с помощью определяемого понятия.

Н-р: прямой угол наз-ся угол равный 90 градусов.


Информация о работе «Теория и методика обучения математике»
Раздел: Математика
Количество знаков с пробелами: 77352
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
21604
0
0

... в психологии. Воспитательные аспекты обучения математике раскрываются в соответствии с концепциями развития личности, которые разработаны в психологии и педагогике. Можно говорить о том, что методика обучения математике как научная область должна иметь такую же структуру, как и любая другая наука, т.е. она должна состоять из отдельных научных теорий. Каждая из них имеет один и тот же объект — ...

Скачать
128040
14
4

... выборок. 5. Исследовательские проекты и их защита. 3 2 1 2 2 2 1 1 1 3 2 1 2 2   Всего 10 5 10   Итого 60 34   Глава 2 Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы 2.1. Организация при формировании пространственного образа, c использованием ...

Скачать
110515
2
1

... , умения и навыки; -     наличие сильных учеников как группы позволяет постоянно продумывать работу с ними, учитывать возможности их развития. 3. Капиносов А.Н. в статье “Уровневая дифференциация при обучении математике в V-IX классах” [14] рассматривает разбиение учащихся на 4 группы. Основой разбиения являются различия учащихся в темпах овладения учебным материалом, а также в способностях ...

Скачать
26217
0
0

... натурального ряда. В качестве графической модели используем числовой луч, на котором дети отмечают точки, соответствующие натуральным числам. Смысл действий сложения и вычитания. В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, ...

0 комментариев


Наверх