3. из каких конкретных задач должен возникать вопрос о введении действительного числа и др.

В зависимости от того как будут решены эти вопросы попутно будут решатся и другие достаточно важные

Например: ввести ли вначале понятие действительного числа, а затем выделить как частный случай иррациональное число или в начале ввести понятие иррационального числа, а затем совместимость рациональных и иррациональных чисел назовем как систему ДЧ.

При выборе метода введения следует учесть научность, доступность учащимися и усваимость данного понятия.

Как известно из курса анализа существует ряд ДЧ Дедекинда, Кантора , и др. будут верными если придерживаться данной теории.

Чтобы ответить на эти вопросы, надо обратить внимание на происхождение понятия ДЧ.

Сущность понятия ДЧ заключается в том, что система ДЧ, есть такая числовая система, которая способна выразить непрерывные изменения величин.

Наиболее простым примером непрерывности процесса является движение точки по прямой и в частности изменения расстояния движущийся точки от некоторой к начальной.

Поэтому естественно понятие о ДЧ рассматривают как понятие о такой системе чисел, которая по своей структуре такова же как совокупность точки прямой.

Из сказанного следует, что выр-на у учащихся понятие ДЧ и понятие непрерывной величины – это 2 стороны одного процесса.

Мы будем рассматривать понятие ДЧ из задачи измерения отрезка.

Понятие ДЧ вводится в 8 классе в теме корня. В начале проводится повторения о рациональных числах – это понятие приводится в систему.

В формировании понятия ДЧ главным является понятие бесконечной десятичной дроби, которую впервые вводится в 8 классе.

До введения понятия ДЧ иррационального числа необходимо добиться у учащихся следующих положений: 1.каждое дробное число можно представить либо в виде конечной десятичной дроби, либо в виде бесконечной десятичной периодической дроби.

 2,0 2,5(0)

 

таким образом, каждое иррациональное может быть представлено в виде бесконечной дроби и наоборот каждое бесконечное периодическое десятичная дробь представление некоторое иррациональное число.

2.вводится понятие арифметического квадратного корня

Определение: арифметическим квадратным корнем из числа а называют неотрицательное число квадрат которого равен а.

Это определение конъюнктивной структуры, объект подходит под понятие лишь при условии наличии обоих требовании и не подходит во всех остальных случаях.

Путем рас-я достаточного количества рас-я примеров необходимо подготовить учащихся к выводу, что выражение  не имеет смысла при отрицательных значениях а.

Возникает вопрос- определено ли выражение  для всех неотрицательных знаменателей а.

Ответ на этот вопрос дается путем решения квадратного уравнения.

Внимание учащихся обращается на тот факт, что рационального числа, квадрат которого равен 2, не существует. На данной ступени обучения считается возможным лишь обнаружение индуктивное этого факта.

Чаще всего при введении иррационального числа в школе исходят из следующих сообщений: возникает вопрос, каждой ли точки прямой соответствует единственное рациональное число, ответ оказывается отрицанием, регистрируется следующим примером.

Как определить его значение. Доказательством что точка М никакому рациональному числу. Предположим обратное, что

2- четное, значит - четное

()2= 2

2= 2=» n – число четное. Наше предположение, что дробь n/m несократимая, неверно, значит  - не является рациональным числом, и его стали называть иррациональным числом.

То получили, что это число нельзя представить в виде отношений целое / к натуральному.

Определение: число которое нельзя представить в виде дроби , где называют иррациональным числом.

Выше было выявлено, что всякое рациональное число может быть представлено в виде периодичной действительной.

Учащимся сообщается, что кроме  существует множество иррациональных чисел, которые представляются в виде  не периодичной дроби и дается определение.

Определение: совокупность иррациональных и рациональных чисел дает множество ДЧ.

Лекция 8. Алгебраические выражения

1. Определение: совокупность чисел и букв соединенных между собой по средствам знаком, которые указывают какие действия или в каком порядке надо произвести над данными числами и значениями букв называются английскими выражением.

Здесь к знакам отнесены (в 9 – летней школе) в основном изучается преобразование рациональных выражений, тождественных преобразований одночленов и многочленов, разложение на множители, преобразование алгебраических дробей.

В погрому старших классов входит тождественное преобразование в тригонометрических и алгебраических выражений потенцированных (9 кл.)

Таким образом, тождественные преобразования, как и другие основные вопросы школьного курса, не входят в одну какую нибудь тему, и рассматриваются во всем курсе алгебры.

2. Определение: Два алгебраических выражения называются тождественными, если они принимают равные численные значения при соответственно равных числовых значениях букв и С общей области допустимых значений.

Тождеством называется равенство двух тождественных выражений.

Для алгебраических дробей тождественность расширяется.

П. С. Александров, Калмагоров дают следующие определения. – Равенство между двумя рациональными выражениями будем называть тождественным, если оно справедливо при всех значениях входящих в него букв, кроме тех исключительных случаев, когда одна из сторон равенства (или он сразу) становятся бессмысленными.

Таким образом, в тождественных преобладаниях эта замена одного выражения другим тождественно равных. Смысл его сохраняется и для нового. Тождественные преобразования состоят в применение к данному выражению основных свойств к действию, необходимо обратить внимание на правильное оформление упражнений, на доказательство тождеств, запись может быть двоякой.

Если следует доказать, , то

1)

2)

т.е. преобразовываем одну часть пока не получим другую или преобразовываем обе части пока не получим одно и тоже выражение в обеих частях.

Основную нагрузку по формированию умений и навыков выполнение преобразований несет курс алгебры.

На начальном этапе используется не расчлененная система преобразований.

П-р: Решить уравнение

а) 7х-5х=2

б) 7х=2+5х

в) 6+ (2-4у) +5у=3(1-3у)

при а) упрощение при помощи применения тождества ( распределительным законом) т.е. (7-5)х=2

б) сводится к пункту а) по сред-вам равносильных преобразований путем переноса.

в) используется преобразование в первых двух случаев.

Принципиальное значение темы тождественное преобразование состоит в следующем:

Данное алгебраическое выражение преобразуется в более простое тождественное выражение.

Выполняя тождество ученики должны осознать, что эти преобразования не являются самоцелью, а служат для нахождения числовых значений выражений для решения уравнения, для изучения функции.

В начальном или 5 классе вводится понятие буквенного выражения. Выражения содержащие буквы называют буквенным выражением.

Для упрощения выражений используется распределительный закон умножения.

Тождественные выражения и их преобразования основываются на законах арифметических действий.

Н-р: 7*а*с*6=42ас

В 7 классе рассматриваются понятия одночлена, его стандартного вида, коэффициента одночлена, умножение одночленов, а также многочлен и его стандартный вид, сложения и вычитание многочленов, умножение многочлена на одночлен и приведение подобных членов.

При изучении этих тем особое внимание следует уделять оформлению записи в тетрадях.

Учащихся надо приучать записывать в порядке алфавита, это позволяет избежать ошибок, при приведении подобных слагаемых.

Н-р: Записи видо12у2х+3х2у+6ух2-3ху2=9ху2+9х2у=9(ху2+х2у)

При умножении многочлена на многочлен надо приучать учащихся строго соблюдать порядок умножения их членов. Н-р: каждый член первого многочлена последовательно умножать на каждый член другого многочлена, это на позволит пропустить некоторые члены многочлена или не повторить их дважды.

Тождества изучаемые в школе можно разделить на 2 класса; первый состоит из тождества сокращенного умножения, а второй обеими тождествами связывающие арифметические операции и основные элементарные функции.

Формулы сокращенного умножения рассматриваются в 7 классе, как частный случай умножения многочленов.

Рассматриваются формулы разность квадратов, квадрат суммы, квадрат разности, сумму и разность кубов.

Формулы куба разности и куба суммы двух выражений даются для учащихся в упражнениях.

К выводу формул умножения нужно привлекать самих учащихся.

Усвоению формул помогают такие предлагаемые упражнения, прочитать следующие выражения: а+с, а-с, (а+с)2, (а-с)2, ас, 2ас, и т.д.

Еще в процессе изучения темы умножения многочленов можно вывести формулу сокращенного умножения.

Так выполняя многократно умножения двух одинаковых многочленов, учащиеся замечают, какие члены получаются при умножении.

Постепенно можно отвлечься от подробной записи и сразу записать результат умножения, так можно поступать и с другими формулами.

Не следует торопить учащегося запоминать формулы, пусть они ещё раз умножат многочлены, при получении навыков тождественных преобразований учащийся можно выделить три основных этапа:

запоминание алгоритма и его применение.

Применение нового алгоритма к совокупности с ранее известными алгоритмами.

Решение широкого круга задач с использованием нового алгоритма.

Н-р: при изучении формулы разности квадратов рекомендуется выделять следующие этапы:

Применять его к упрощению выражение (с-3)(с+3), (5х+1)(5х-1) и т.д. Чтобы учащиеся поняли, что результат не зависит от порядка множителей и от порядка слагаемых в сумме.

Умение применять формулу (а-с)(а+с) в сочетании с другими тождественными преобразованиями, применением с использованием свойств степени с натуральными показателями.

П-р: (12с2-7а3)(7а3+12с2); (-11р4+9)(9+11р4)

Умение применять форму при решении уравнений, неравенств, и их систем при исследовании функции, задача на делимость и другие.

В этих этапах самым важным является первый этап, где учащимся раскрывается сущность нового алгоритма, создаются основы для его усвоения и правильного применения. Излишне поспешное беглое прохождение первого этапа является основной причиной грубых ошибок в преобразованиях допускаемые учащимися. К ним относятся, например, ошибки вида: 25*73=148

(а+2)2=а2+4

(х+1)2=х2+1

с целью предупреждения подобных ошибок необходимо время от времени предлагать учащимся называть определения свойств, на которые основано выполнение преобразования.

Н-р: если ученик записал (а4)2=а16, то надо не только вспомнить определение, но и сделать подробную запись.

(а4)2=а4а4=(а*а*а*а)(а*а*а*а)=а8

Иногда, чтобы убедить учащихся в ошибочной записи, необходимо использовать числовые подстановки.


Информация о работе «Теория и методика обучения математике»
Раздел: Математика
Количество знаков с пробелами: 77352
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
21604
0
0

... в психологии. Воспитательные аспекты обучения математике раскрываются в соответствии с концепциями развития личности, которые разработаны в психологии и педагогике. Можно говорить о том, что методика обучения математике как научная область должна иметь такую же структуру, как и любая другая наука, т.е. она должна состоять из отдельных научных теорий. Каждая из них имеет один и тот же объект — ...

Скачать
128040
14
4

... выборок. 5. Исследовательские проекты и их защита. 3 2 1 2 2 2 1 1 1 3 2 1 2 2   Всего 10 5 10   Итого 60 34   Глава 2 Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы 2.1. Организация при формировании пространственного образа, c использованием ...

Скачать
110515
2
1

... , умения и навыки; -     наличие сильных учеников как группы позволяет постоянно продумывать работу с ними, учитывать возможности их развития. 3. Капиносов А.Н. в статье “Уровневая дифференциация при обучении математике в V-IX классах” [14] рассматривает разбиение учащихся на 4 группы. Основой разбиения являются различия учащихся в темпах овладения учебным материалом, а также в способностях ...

Скачать
26217
0
0

... натурального ряда. В качестве графической модели используем числовой луч, на котором дети отмечают точки, соответствующие натуральным числам. Смысл действий сложения и вычитания. В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, ...

0 комментариев


Наверх