5 пункт

Чтобы доказать равенство треугольников надо показать, что условие соответствует одному из признаков равенства треугольников, т.е идти от 5 пункта к 1 пункту.

При подготовке к доказательству теорем можно использовать следующие 3 способа: подача, формулировки теорем.

Учитель проводит такую работу, после которой ученики сами дают формулировку теоремы.

Учитель предварительно разъясняет содержание формулировки теоремы, теорему дает сам.

Учитель сразу дает формулировку теоремы, потом проводит разъяснительную работу.

Учитель обязан продумать чертеж к теореме 6

В учебнике доказательство дается сплошным текстом, учитель обязан продумать лаконичную гладкую запись, подразделяя доказательство на этапы рассуждения.

Обратить на важность теоремы. Наиболее важными теоремами в планиметрии являются теоремы о сумме углов треугольника, теорема Евклида.

Обратить внимание учащихся на слова и термины, появившиеся впервые в формулировках теорем и на доске дать правильную запись и символы которыми они обозначаются.

Иногда полезно давать ошибочные формулировки, чтобы проверить уровень усвоения теоремы.

Н-р: 1) в треугольнике против равных углов лежат равные стороны.

2) почему в равносторонних треугольниках углы при основании остры.

Условие обеспечения доказательства теоремы.

Если доказательство должно быть только понятно, то оно должно проверятся кратко, если доказательство должно быть усвоено, проверятся подробно.

Для учителя важно темп подачи материала, тембр голоса, монотонность речи, языковые погрешности, чрезмерная громкость.

Литература:

Бондаренко А.Ф. «Формирование педагогических речевых умений»- советская педагогика №3,1983г

Бухвалова «О требованиях в речи педагога» народное обучение М, 1983

Куваев «Диалог как форма обучения доказательства» №6, 1985г. Математика в школе- журнал

Приемы закрепления доказательства теоремы: закрепляется в 2 этапа: на уроке и последствии.

Следует разделять усвоение доказательства и ее запоминание.

Для проверки используются вопросы целесообразные.

Прием 1: После доказательства теоремы: один или два ученика повторяют доказательство теоремы.

Прием 2: Учитель предоставляет серию вопросов, отвечая на который, ученик прогоняет основные этапы доказательства.

Прием 3: Ученикам предлагается составит план доказательства.

Прием 4: На доске или на пленке кодоскопа заготавливается последовательность выводов, а ученики должны привести аргументы этих выводов.

Методы доказательств.

Нисходящий анализ.

При нисходящем анализе рас-ние выполняется в предложении, о том что истинность или ложность суждения выяснена, опираясь на допущение и доказательстве ранее теоремы, выводят одно или несколько следствий из заключения из заключения до тех пор пока вопрос об истинности который в данной теории решен.Т.О. Нисходящий анализ состоит в отыскании необходимых условиях, заключениях теоремы.

Доказательство в форме Нисходящего анализа проводятся по следующей схеме: АС, то СВ1В2Вх (условие А учитывается при выборе В1)

Последовательное заключение Вх такое суждение истинность или ложность которого известна. Если Вх ложно, то и С ложно. В этом случае нисходящий анализ может быть применен как метод сурового доказательства и прямого доказательства. Если же истина т.е из приведенных рассуждений об истинности С нельзя сказать определенно, рассуждение нельзя считать доказательством, нисходящий анализ в этом случае может быть использован как метод доказательства.

Можно попытаться провести синтетическое доказательство, проверив обратимость рассуждений, если рассуждение обратимо ВхВх-1В1С, то С истина. Если же не возможно провести обратное рассуждение, то необходимо искать другой метод доказательства.

П-р:

предлагается, что данное неравенство справедливо для любых a,b неотрицательных.

Последовательное утверждение истина.

Убедившись, что утверждение обратимы делаем вывод об истинности доказываемого неравенства, Т.О. нисходящий анализ в случаи истинности Вх не может служить методом строгого доказательства. Он требует обратного синтетического хода рассуждений, поэтому он называется несовершенным анализом.

В этом случае, когда Вх ложное, используют метод косвенного доказательства или метод от противного, который заключается в следующем:

1. Если следует доказать теорему: АС, то представляют, что С ложно  (отрицание) по закону исключения третьего.


Информация о работе «Теория и методика обучения математике»
Раздел: Математика
Количество знаков с пробелами: 77352
Количество таблиц: 1
Количество изображений: 7

Похожие работы

Скачать
21604
0
0

... в психологии. Воспитательные аспекты обучения математике раскрываются в соответствии с концепциями развития личности, которые разработаны в психологии и педагогике. Можно говорить о том, что методика обучения математике как научная область должна иметь такую же структуру, как и любая другая наука, т.е. она должна состоять из отдельных научных теорий. Каждая из них имеет один и тот же объект — ...

Скачать
128040
14
4

... выборок. 5. Исследовательские проекты и их защита. 3 2 1 2 2 2 1 1 1 3 2 1 2 2   Всего 10 5 10   Итого 60 34   Глава 2 Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы 2.1. Организация при формировании пространственного образа, c использованием ...

Скачать
110515
2
1

... , умения и навыки; -     наличие сильных учеников как группы позволяет постоянно продумывать работу с ними, учитывать возможности их развития. 3. Капиносов А.Н. в статье “Уровневая дифференциация при обучении математике в V-IX классах” [14] рассматривает разбиение учащихся на 4 группы. Основой разбиения являются различия учащихся в темпах овладения учебным материалом, а также в способностях ...

Скачать
26217
0
0

... натурального ряда. В качестве графической модели используем числовой луч, на котором дети отмечают точки, соответствующие натуральным числам. Смысл действий сложения и вычитания. В курсе математики начальной школы находит отражение теоретико-множественный подход к истолкованию сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, ...

0 комментариев


Наверх