10.4 Проверочный расчёт шпоночных соединений
Шпоночное соединение предусмотрено для тяговой звёздочки и муфты.
По табл. 2П.9 приложения 2П определяем размеры призматических шпонок по ГОСТ 23360-78:
а) для тяговой звёздочки: ; ; ; исполнение шпонки - 1; при длине ступицы тяговой звёздочки полная длина шпонки ; рабочая длина шпонки ;
б) для муфты; ; размеры шпонки; для ; ; ; исполнение шпонки - 1: полная длина шпонки ; рабочая длина шпонки ; форма конца вала- цилиндрическая.
Так как приводной вал на длине от муфты до тяговой звёздочки нагружен одинаковыми крутящим моментом , то проверяем на смятие шпонку с меньшими размерами т.е. шпоночное соединение муфты. Тогда для переходной посадки Н7/k6 при стальной ступице (см. п. 8.1 главы 8). Расчётное напряжение смятия при и :
что не превышает .
Принимая во внимание, что полученное напряжение смятия оказалось довольно большим, следует проверить шпоночное соединение тяговой звёздочки ввиду меньшей величины рабочей длины шпонки.
что меньше для посадки с натягом Н7/г6.
10.5 Определение радиальных реакций опор вала и построение эпюр моментов
Линейные размеры: ; .
Cила S нагружает приводной вал только в горизонтальной плоскости Х0Z (расчётная схема вала приведена на рис. 10.1).
Тогда радиальные реакции опор:
; ;
;
; ;
Проверка: - реакции найдены правильно.
Реакции от консольной силы, создаваемой муфтой, находим отдельно для расчётной схемы вала, нагруженного только данной силой:
; ;
.
; ;
.
Проверка: - реакции найдены правильно.
Радиальные реакции опор для расчёта подшипников:
;
.
Для построения эпюр определяем значения изгибающих моментов в
характерных сечениях вала:
сечение А; ;
сечение D: ;
сечения В: .
Нагружение от муфты:
сечение C: ;
сечение A: ;
сечение B: .
Передача врашающего момента происходит вдоль оси вала от сечения С до сечения D (см. эпюру крутящего момента Мк). При этом .
Рисунок 10.1
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев