6. Проверочный расчет зубьев червячного колеса на сопротивление усталости при изгибе. Окружная сила на червячном колесе
.
Эквивалентное число зубьев колеса
.
Коэффициент формы зуба червячного колеса принимают в зависимости от :
В нашем примере для линейным интерполированием .
Коэффициент расчетной нагрузки при расчете зубьев колеса на сопротивление усталости при изгибеn .
Нормальный модуль
.
Напряжения изгиба зубьев колеса
что меньше .
7. Проверочный расчет передачи на контактную прочность при кратковременной перегрузке. По формуле (2.34) в п.2.1 предельно допускаемые контактные напряжения для оловянной бронзы
.
Максимальные контактные напряжения при кратковременной перегрузке
.
- кратковременная перегрузка (см. исходные данные).
Контактная прочность зубьев червячного колеса при кратковременной перегрузке обеспечена, так как .
8. Проверочный расчет передачи на изгибную прочность при кратковременной перегрузке. Как и ранее, расчет проводим только для зубьев червячного колеса, так как витки червяка по форме и материалу значительно прочнее зубьев колеса.
Предельно допускаемые напряжения изгиба
.
Максимальные напряжения изгиба при кратковременной перегрузке
.
Изгибная прочность зубьев червячного колеса при кратковременной перегрузке обеспечивается, так как
.
9. Тепловой расчет червячной передачи. Данный расчет сводится к определению температуры масла в картере редуктора по формуле
(2.11)
где ; - мощность на валу червяка, Вт; - коэффициент теплоотдачи,
Вт/(м2 -°C); для корпусов при естественном охлаждении Вт/(м2 -°C); А -площадь поверхности охлаждения корпуса за исключением поверхности дна, которой корпус прилегает к раме или плите, м2 (определяется по чертежу редуктора); - коэффициент, учитывающий отвод теплоты от корпуса редуктора в раму или плиту.
Нормальная работа червячной передачи обеспечивается при выполнении условия , где - для редукторных смазочных материалов и
- для авиационных.
,
что допустимо.
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев