Проверочный расчёт подшипников по динамической грузоподъёмности

Привод цепного конвейера
Определим межосевого расстояния Определение степени точности передачи Определение допускаемого напряжения изгиба при расчёте зубьев на сопротивление усталости при изгибе Проверочный расчёт передачи при изгибе пиковой нагрузкой (при кратковременной перегрузке) Проверочный расчет зубьев червячного колеса на сопротивление усталости при изгибе. Окружная сила на червячном колесе Определение сил, действующих в червячном зацеплении Промежуточный вал Тихоходный вал Конструирование элементов передач привода Разработка конструкции червячного колеса Конструктивное оформление фланцев корпуса Конструктивное оформление приливов для подшипниковых гнёзд Фиксирование элементов корпуса Расчёт соединения вал-ступица Тихоходный вал Промежуточный вал Тихоходный вал Расчёт валов редуктора на сопротивление усталости и статическую прочность Промежуточный вал Тихоходный вал Проверочный расчёт предварительно выбранных подшипников качения и выбор для них посадок Тихоходный вал Предварительная разработка конструкции приводного вала Выбор тяговой пластинчатой цепи по ГОСТ 588-81 и определение расчётного усилия S Проверочный расчёт шпоночных соединений Проверочный расчёт подшипников по динамической грузоподъёмности
75145
знаков
0
таблиц
8
изображений

10.6 Проверочный расчёт подшипников по динамической грузоподъёмности

При разработке конструкции приводного вала (см. выше п.1) в качестве его опор предварительно были выбраны радиальные сферические двухрядные подшипники лёгкой серии 1216. Выполним проверочный расчёт этих подшипников.

Примем коэффициент безопасности . При вращении внутреннего кольца подшипника коэффициент . Подшипники приводного вала нагружены только радиальными нагрузками  (для опоры А , для опоры В ). Осевые нагрузки  на подшипники отсутствуют.

Тогда эквивалентная динамическая нагрузка для более нагруженной опоры А:


.

Приняв по табл. 10.1 коэффициент  (для типового режима нагружения 2) и по табл. 10.2 коэффициент  (для шарикоподшипников сферических двухрядных), а также показатель  (для шариковых подшипников), определим расчётный ресурс (долговечность) подшипника опоры А

Предварительно выбранный подшипник 1216 подходит, так как .

Выбор посадок подшипников.

Подшипники приводного вала установлены по схеме 3 (вариант 3.2): опора В фиксирующая, опора А - плавающая.

Внутренние кольца подшипников имеют циркуляционное нагружение, наружные - местное. Определяем отношение

.

По табл. 10.1 и 10.2 принимаем поля допусков: вала-m6, отверстия - Н7.

 

10.7 Расчёт вала на сопротивление усталости и статическую прочность

В качестве материала приводного вала примем сталь 45 (см. табл. 9.1): диаметр заготовки не более 120 мм (наибольший диаметр вала составляет размер буртика для ступицы тяговой звёздочки, равный 105 мм), твёрдость не ниже 240НВ, , ,  и .

Анализ конструкции вала, а также эпюр изгибающего М и крутящего Мк моментов (рис. 10.1) показывает, что предположительно опасным является сечение D.

Расчёт сечения D на сопротивление усталости. Из рис. 10.1 видно, что концентратором напряжений в сечении D является посадка с натягом ступицы тяговой звёздочки, а также шпоночный паз.

Определим отношение  для каждого из концентраторов напряжений.

Концентратор напряжений - посадка на вал с натягом ступицы тяговой звёздочки. По табл. 9.5 при  для  и посадки I линейным интерполированием  и .

Концентратор напряжений – шпоночный паз. По табл. 9.4 при  для валов со шпонками  и . По табл. 9.6 линейным интерполированием для вала из углеродистой стали диаметром  коэффициент : при изгибе , при кручении . Тогда отношения: ; .

В расчёт принимаем первый концентратор - посадка на вал с натягом ступицы тяговой звёздочки, так как у него больше отношение  и .

Посадочная поверхность вала под подшипник шлифуется. Тогда по табл. 9.7 коэффициент .

Поверхность вала дополнительно не упрочняется. Тогда коэффициент.

Суммарные коэффициенты  и :


;

.

Изгибающий момент в рассматриваемом сечении А:

Крутящий момент в данном сечении .

Для круглого сплошного сечения D со шпоночным пазом в соответствии с табл. 9.2:

Осевой момент сопротивления сечения:

Полярный момент сопротивления сечения:

Амплитуда напряжений цикла:

Среднее напряжение цикла: ; .

Коэффициенты :


;

.

Коэффициенты запаса по нормальным и касательным напряжениям:

;

.

Коэффициент запаса прочности по усталости в сечении D:

Сопротивление усталости вала в сечения D обеспечивается.

Расчёт вала на статическую прочность. Расчёт вала на статичёскую прочность проводим для сечения D.

При коэффициенте перегрузки  эквивалентное напряжение  для сечения D:

Предварительно допускаемое напряжение для приводного вала при : .

Статическая прочность приводного вала обеспечивается, так как .


Информация о работе «Привод цепного конвейера»
Раздел: Промышленность, производство
Количество знаков с пробелами: 75145
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
16774
0
9

... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те

Скачать
41198
10
21

... Результаты расчётов сводятся в табл.1.2 и являются исходными данными для всех следующих расчётов. Таблица 1.2 Результаты кинетического и силового расчётов привода Параметры № вала N, кВт ω рад/с М,Нм 1 16,5 102,05 161,7 2,98 47,68 2 15,7 34,24 458,5 4 3 14,9 8,56 1740 4 4 14,3 2,14 6682 1 5 13 2,4 6542 2. Расчет ...

Скачать
11229
0
1

... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где:  – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...

Скачать
53034
1
0

... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 &# ...

0 комментариев


Наверх