12.12.3 Определение тока сваривания по экспериментальным данным
Эта экспериментальная формула даёт хорошее совпадение расчётных и экспериментальных данных по , для маломощных одноточечных серебряных и медных контактов.
– это напряжение, соответствующее плавлению контакта материала
12.12.4 Определение тока сваривания по опытным данным
В соответствии с рекомендациями Буткевича:
где – определяется по [1, табл. 5.9 и рис. 5.12], который получен на опытных данных.
Полученные значения тока сваривания сопоставляются между собой и для дальнейших расчётов принимают меньшее значение. Принятое это значение тока сваривания сопоставляется с возможным током к.з. при работе аппарата или с предельным током для соответствующей категории применения аппаратов, при этом должно выполняться условие: ;.
12.13 Мероприятия по повышению устойчивости контактов против сваривания
12.13.1 Конструктивные мероприятия
а) повышение силы конечного контактного нажатия.
б) уменьшение вибрации контактов при включении и выключении.
в) ускорение процесса возрастания силы нажатия после замыкания контактов.
г) компенсация отбрасывающего давления электродинамических сил:
– предельный ток для заданной категории применения аппарата или ток к.з.
S1 – поперечное сечение контактной детали
S – сечение площади смятия:
Эта сила Fэду возникает в контактных площадках при замкнутых контактах, за счёт стягивания линий тока в контактных площадках.
д) изменение формы контактной поверхности.
Точечный контакт сваривается при меньших токах, чем линейный, а линейный контакт – при меньших токах, чем плоскостной.
е) разделение контактов на ряд параллельных.
Парные контакты свариваются при токах ≈ в два раза больше чем одинарных.
При этом распределение тока в контактах следует определять по формуле:
, А
где – коэффициент неравномерности ;
– число параллельных ветвей
12.13.2 Повышение устойчивости за счёт рационального выбора материала
а) применение разнородных материалов для контактов;
б) использование металлокерамических контактов, содержащих графит;
в) использование мелкодисперсных металлокерамических контактов.
12.14 Износостойкость контактов
12.14.1 Общие положения
Износ контактов зависит от многих факторов и происходит при замыкании и размыкании.
Износостойкость зависит:
а) условия работы:
· род тока (постоянный, переменный)
· напряжение источника питания
· величина тока
· характер нагрузки (активная, слабо инд., сильно инд.)
· частота включений в час
· среда (воздух, масло, спец. газовая среда и др.)
б) конструкции аппарата:
· время коммутации
· вибрация контакта
· конструктивная форма контакта
· напряжённость магнитного поля в межконтактном промежутке (увеличение напряжения больше оптимального приводит к выбрасыванию мостика расплавленного металла ЭДУ и повышению износа)
· скорость движения контактов (скорость движения при включении и скорость движения при отключении)
Мерой износа контактов является уменьшение провала контактов (линейный износ), а также объём и масса удаляемого с контактной поверхности металла.
12.14.2 Расчётные зависимости для определения электрической износостойкости
Электрическая износостойкость или гарантируемое число коммутаций в общем случае определяется по формуле:
, или ,
где – объём изнашиваемого металла двух контактов, см3
– удельный объёмный износ при одном размыкании и одном замыкании
– плотность материала
– удельный массовый износ при одном замыкании и одном размыкании
При решении прямой задачи обычно задаются и определяют изнашиваемый объём. принимают на основании заданной механической износостойкости, которая определяется по классу механической износостойкости в рамках технического задания. В идеальном случае мы должны стремиться к выполнению условия:
т.е., чтобы электрический аппарат и все его узлы работали до полного износа (класс механического износа см.[3]).
... . t, с U, °С 0 0 500 36,5 1000 54 1500 62,3 2000 66,4 2500 68,2 3000 69,2 3600 69,7 2. Проектирование передаточного устройства 2.1 Выбор и обоснование кинематической схемы Согласно технологической схеме рабочей машины, транспортер приводится в движение электродвигателем через цепную передачу. Цепная передача отличается простотой в монтаже и эксплуатации, исключает ...
... механизма подачи, которое остается между двигателем и исполнительным механизмом. Принимаем передаточное отношение ременной передачи i=3. Таблица 2 - Механика привода подач станка 16К20 Характер подачи Поперечная подача резцедержателя мм/мин Продольная подача стола, мм/мин Минимальная 0,000662 0,0000619 Максимальная 0,3814 0,253377 Ускоренная 1900 3800 Рассчитаем передаточные ...
... две части: расчет надежности механической и электрической части. Расчет механической части на данном этапе проектирования произвести не возможно, так как величины интенсивности отказов элементов γi, входящих в изделие известны не для каждого элемента. Расчет электрической части трепанатора возможно произвести по методике, изложенной в [] Вероятность безотказной работы определим по формуле: ...
... числовое значение списочного номера студента. Трудоёмкость изготовления детали получена путём суммирования показателей трудоёмкости каждой операции. 2. ПРОЕКТироВАНие ПОТОчнОй ЛиНии МЕХАНической ОБРаБотКИ ДЕТАЛи 2.1. Особенности и преимущества поточного производства Поточное производство – это производство, при котором станки располагаются в последовательности технологических ...
0 комментариев