Порядок расчета общей электрической изоляции аппарата высокого напряжения

Проектирование электромеханических устройств
РЯДЫ ПРЕДПОЧТИТЕЛЬНЫХ ЧИСЕЛ НОМИНАЛЬНЫХ ПАРАМЕТРОВ ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ И ПАРАМЕТРОВ АППАРАТОВ СЕРИИ Зависимость силы контактного нажатия аппаратов серии от величины номинального тока Аппараты низкого напряжения Порядок расчета общей электрической изоляции аппарата высокого напряжения Расчёт проводника с переменным сечением по длине Повторно-кратковременный режим работы Выбор формы контактной поверхности Определение силы контактного нажатия коммутирующего контакта Определение переходного сопротивления контактов Определение напряжения и температуры нагрева коммутирующих контактов Определение тока сваривания по экспериментальным данным МАЛОМОЩНЫЕ РЕЛЕ При относительно больших силах и небольших перемещениях (прогибах) целесообразно применять сталь Выбор материала пружины Условия гашения дуги переменного тока Учёт влияния индуктивности отключаемой цепи при расчётах дугогасительных устройств постоянного тока Гашение дуги постоянного тока в камере с продольной щелью в поперечном магнитном поле Производится расчёт температуры нагрева камеры. Этот пункт, прежде всего, относится к проектированию аппаратов для повторно-кратковременного режима ГАШЕНИЕ ДУГИ ПЕРЕМЕННОГО ТОКА В КАМЕРЕ С ПРОДОЛЬНОЙ ЩЕЛЬЮ В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ Корректируются размеры дугогасительного устройства с учётом стрелы вылета дуги
111764
знака
7
таблиц
77
изображений

8.4 Порядок расчета общей электрической изоляции аппарата высокого напряжения

Характерные изоляционные промежутки в зависимости от конфигурации электрического поля, заменяют эквивалентной формой электродов типа: игла-игла, игла-плоскость, плоскость-плоскость и др.

По величине номинального напряжения определяется величина испытательного сухоразрядного напряжения с учётом условий работы.

По величине испытательного напряжения и рекомендуемых значений коэффициентов  и  определяется величина пробивного напряжения.

По экспериментально полученным зависимостям  для соответствующей конфигурации электродов и среды, определяется необходимое расстояние S1 и S2 и т.д.

Рисунок 1.3 – Зависимость разрядного напряжения  от расстояния между электродами  и их формой


9 ПРОЕКТИРОВАНИЕ ОБОЛОЧЕК ЭЛЕКТРИЧЕСКИХ АППАРАТОВ ЭЛЕКТРООБОРУДОВАНИЯ. СТЕПЕНИ ЗАЩИТЫ ОБОЛОЧКАМИ ЭЛЕКТРООБОРУДОВАНИЯ

Под термином электрооборудование надо понимать оборудование, предназначенное для производства, преобразования, распределения и потребления электрической энергии, а также электроприборы управления, защиты, контроля, измерения, сигнализации и т. д. Для нормальной работы электрических аппаратов в ряде случаев требуется применение специальных мер для защиты их от влияния окружающей среды. Это достигается применением оболочек. Оболочки должны изготавливаться из негорючих материалов.

Конструкция оболочки должна соответствовать условиям эксплуатации.

Прокладки между соприкасающимися частями оболочек предназначены для защиты от проникновения воды и пыли, должны изготавливаться из прочного, влагостойкого, а при необходимости и негорючего материала.

В соответствии с заданными условиями эксплуатации, оболочки должны иметь такое крепление крышек, которое обеспечивало бы быстрое и лёгкое их открывание, при этом болты должны быть невыпадающие. Защита от проникновения внутрь оболочки электрооборудования пыли и влаги через место ввода кабеля или проводов должна обеспечиваться либо уплотнением эластичного кольца, либо заливкой затвердевающей изоляционной массой.

Для обозначения степени защиты применяется буквенное и цифровое обозначение:


Следующие за буквенным обозначением две цифры обозначают вид и степень защиты в соответствии со стандартизацией.

Первой цифрой устанавливается степень защиты персонала от соприкосновения с находящимися под напряжением и движущимися частями, расположенными внутри оболочки. А также защиты оборудования от попадания внутрь твёрдых посторонних тел.

Второй цифрой устанавливается степень защиты электрооборудования от проникновения воды.

Таблица 1.5 - Обозначение степени защиты для низковольтных электрических аппаратов

Первая

цифра в обозначении

Вторая цифра в обозначении
0 1 2 3 4 5 6 7 8
0 JP00
1 JP10 JP11 JP12
2 JP20 JP21 JP22 JP23
3 JP30 JP31 JP32 JP33 JP34
4 JP40 JP41 JP42 JP43 JP44
5 JP50 JP51 JP54 JP55 JP56
6 JP60 JP65 JP66 JP67 JP68

Цифры и буквы обозначения степени защиты электроаппаратов.

Первые цифры обозначения степени защиты обозначают:

0 – нет защиты

1 – защита от касания рукой

2 – защита от касания пальцем

3 – проволока диаметром 2,5 мм не проникает в оболочку

4 – проволока диаметром 1 мм не проникает в оболочку

5 – тальковый порошок, просеянный через сито с диаметром проволок 50 мкм и расстоянием между ними 75 мкм, проникший во внутрь оболочки при испытании, не нарушает удовлетворительную работу аппарата и его изоляцию, даже если порошок проводящий

6 – в условиях, указанных в п.5 тальк не проникает внутрь оболочки

Вторая цифра обозначает степень защиты:

0 – нет защиты

1 – защита от вертикально-капающих капель воды

2 – защита от вертикально-капающих капель конденсата воды, когда аппарат наклоняется на 150 от рабочего положения во все стороны

3 – защита от дождя, падающего под углом не более 600 к вертикали

4 – защита от брызг воды в любом направлении

6 – защита от условий, существующих на палубе судна, под действием морской волны вода не должна проникать внутрь оболочки

7 – защита при погружении в воду на глубину до 1м не более 30 мин.

8 – защита при неограниченно – долгом погружении в воду под определённым давлением


10 ПРОЕКТИРОВАНИЕ ПРОВОДНИКОВ И КОНТАКТНЫХ СОЕДИНЕНИЙ ТОКОВЕДУЩЕГО КОНТУРА ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

Токоведущий контур большинства электрических аппаратов состоит из набора различных деталей разной формы и размеров, и, как правило, в него входят в общем случае следующие элементы:

·  коммутирующие контакты (силовые контакты), перемычки, гибкие шунты (в случае поворотной системы),

·  токовые катушки (катушки магнитного дутья),

·  термоэлементы и т.д.

При расчёте проводников токоведущего контура электрического аппарата необходимо выполнить последовательно две задачи:

1 Определить площадь и размеры сечения в нормальном рабочем режиме (продолжительный, кратковременный, повторно-кратковременный режим)

2 Провести проверку выбранного сечения в кратковременном режиме:

а) для максимальных пусковых токов (аппараты управления)

б) для аварийных токов (токов к.з.) (аппараты распределения электрической энергии)


11 ОПРЕДЕЛЕНИЕ ПЛОЩАДИ И РАЗМЕРОВ СЕЧЕНИЯ ПРОВОДНИКОВ ТОКОВЕДУЩЕГО КОНТУРА В НОРМАЛЬНЫХ РЕЖИМАХ

 

11.1 Продолжительный режим

 

11.1.1 Расчет проводника с неизменным сечением по длине

Для получения расчётных формул воспользуемся уравнением теплового баланса:

где:– это энергия, выделяемая в проводнике;

– это часть энергии, расходуемая на нагрев проводника;

– это часть энергии, которая отдаётся в окружающую среду.

Рисунок 1.4 – Нагрев проводника до установившейся температуры

Для установившегося процесса нагрева уравнение теплового баланса приобретает вид:

где: – коэффициент теплоотдачи, который в свою очередь зависит от температуры ,

 - коэффициент дополнительных потерь: 

– коэффициент поверхностного эффекта;

– коэффициент эффекта близости.

Для переменного тока частотой 50 Гц –

где:  – длина элемента, м

– его сечение, м2

– удельное сопротивление приведенное к установившейся температуре: ,

- удельное электрическое сопротивление при 00С,

 – температурный коэффициент возрастания электрического сопротивления:

если медь:

если алюминий:

- температура окружающей среды, = +400 С;

,

– принимается в соответствии с рекомендациями ГОСТ с учётом материала элемента токоведущего контура и наличия покрытий, но, как правило, привязывается к классам нагревостойкости изоляции.

где: – поверхность охлаждения элемента токоведущего контура:, м2

– периметр сечения токоведущего контура, м

– длина проводника, м

, м3 (1)

Если элементы токоведущего контура имеют прямоугольное сечение, то формула (1) приобретает следующий вид:

,


Рисунок 1.5 – Проводник прямоугольного сечения

Если элементы токоведущего контура имеют круглое сечение, то формула (1) приобретает следующий вид:

, , (2)

Рисунок 1.6 – Проводник круглого сечения

, (3)

При наличии на элементах токоведущего контура изоляции в зависимости от количества слоёв расчётные формулы имеют вид:

Рисунок 1.7– Проводник с одним слоем изоляции

δ – толщина изоляции, м

λ1 – коэффициент теплопроводности,

, (4)

Рисунок 1.8– Проводник с двумя слоями изоляции


При расчётах можно выражать параметры сечения через :

, где – целое число

После получения расчётных размеров сечения, их доводят до стандартных значений, руководствуясь, ГОСТ на сортаменты либо руководствуясь конструктивными технологическими соображениями.

При расчётах параметров элементов токоведущего контура необходимо учитывать условия теплообмена с окружающей средой, т.е. уточнять .


Информация о работе «Проектирование электромеханических устройств»
Раздел: Физика
Количество знаков с пробелами: 111764
Количество таблиц: 7
Количество изображений: 77

Похожие работы

Скачать
19194
4
2

... . t, с U, °С 0 0 500 36,5 1000 54 1500 62,3 2000 66,4 2500 68,2 3000 69,2 3600 69,7 2. Проектирование передаточного устройства 2.1 Выбор и обоснование кинематической схемы Согласно технологической схеме рабочей машины, транспортер приводится в движение электродвигателем через цепную передачу. Цепная передача отличается простотой в монтаже и эксплуатации, исключает ...

Скачать
35454
6
10

... механизма подачи, которое остается между двигателем и исполнительным механизмом. Принимаем передаточное отношение ременной передачи i=3. Таблица 2 - Механика привода подач станка 16К20 Характер подачи Поперечная подача резцедержателя мм/мин Продольная подача стола, мм/мин Минимальная 0,000662 0,0000619 Максимальная 0,3814 0,253377 Ускоренная 1900 3800 Рассчитаем передаточные ...

Скачать
53562
7
16

... две части: расчет надежности механической и электрической части. Расчет механической части на данном этапе проектирования произвести не возможно, так как величины интенсивности отказов элементов γi, входящих в изделие известны не для каждого элемента. Расчет электрической части трепанатора возможно произвести по методике, изложенной в [] Вероятность безотказной работы определим по формуле: ...

Скачать
59924
27
4

... числовое значение списочного номера студента. Трудоёмкость изготовления детали получена путём суммирования показателей трудоёмкости каждой операции. 2.         ПРОЕКТироВАНие ПОТОчнОй ЛиНии МЕХАНической ОБРаБотКИ ДЕТАЛи 2.1.     Особенности и преимущества поточного производства Поточное производство – это производство, при котором станки располагаются в последовательности технологических ...

0 комментариев


Наверх