230. Углекислый газ и азот находятся при одинаковых температуре и давлении. Найти для этих газов отношение коэффициентов внутреннего трения.
231. Какой объем занимает смесь газов – азота массой m1=1 кг и гелия массой m2=1 кг – при нормальных условиях?
232. Газ при температуре Т=309 К и давлении р=0,7 МПа имеет плотность r=12 кг/м3. Определить относительную молекулярную массу газа.
233. В баллоне объемом v=25 л находится водород при температуре Т=290 К. После того как часть водорода израсходовали, давление в баллоне понизилось на Dр=0,4 МПа. Определить массу израсходованного водорода.
234. Баллон объемом V=30 л содержит смесь водорода и гелия при температуре Т=300 К и давлении р=828 кПа. Масса m смеси равна 24 г. Определить массу m1 водорода и m2 гелия.
235. В баллонах объемом V1=20 л и V2=44 л содержится газ. Давление в первом баллоне р1=2,4 МПа, во втором р2=1,6 МПа. Определить общее давление р и парциальные р1I и р2I после соединения баллонов, если температура газа осталась прежней.
236. Баллон объемом 12 л содержит углекислый газ. Давление газа р равно
1 МПа, температура Т=300 К. Определить массу газа в баллоне.
237. Сколько молекул газа содержится в баллоне вместимостью V=30 л при температуре Т=300 К и давлении р=5 Мпа?
238. Давление газа равно 1 МПа, концентрация его молекул равна 1010 см-3. Определить: 1) температуру газа; 2) среднюю кинетическую энергию поступательного движения молекул.
239. В колбе вместимостью V=240 см3 находится газ при температуре Т=290 К и давлении 50 кПа. Определить количество вещества газа n и число его молекул N.
240. 12 г газа занимают объем V=4×10-3 м3 при температуре 7 0С. После нагревания газа при постоянном давлении его плотность r=1×10-3 г/см3. До какой температуры нагрели газ?
241. Каковы удельные теплоемкости сv и сp смеси газов, содержащей кислород m1=10 г и углекислый газ m2=20 г?
242. Определить удельную теплоемкость сv смеси газов, содержащей V1=5 л водорода и V2=3 л гелия. Газы находятся при одинаковых условиях.
243. Определить удельную теплоемкость сp смеси кислорода и гелия, если количество вещества (n=) первого компонента равно 2 молям, а количество вещества второго – 4 молям.
244. Смесь газов состоит из хлора и криптона, взятых при одинаковых условиях и в равных объемах. Определить удельную теплоемкость сp смеси.
245. Вычислить удельные теплоемкости сv и сp газов: 1) гелия; 2) водорода; 3) углекислого газа.
246. Разность удельных теплоемкостей (сp - сv) некоторого двухатомного газа равна 260. Найти молярную массу m газа и его удельные теплоемкости сv и сp.
247. Дана смесь газов, состоящая из неона, масса которого m1=4 кг и водорода, масса которого m2=1 кг. Газы считать идеальными. Определить удельные теплоемкости смеси газов в процессах: p=const, V=const.
248. Принимая отношение теплоемкостей для двухатомных газов g=1,4, вычислить удельные теплоемкости кислорода.
249. Найти отношение сp/сv для смеси газов, состоящей из 10 г гелия и 4 г водорода.
250. Вычислить отношение ср/сv для смеси 3 молей аргона и 5 молей кислорода.
251. Водород занимает объем V1=10 м3 при давлении р1=100 кПа. Газ нагрели при постоянном объеме до давления р2=300 кПа. Определить:1) изменение внутренней энергии газа; 2) работу А, совершаемую газом; 3) количество теплоты Q, сообщенное газу.
252. Азот нагревается при постоянном давлении, причем ему было сообщено количество теплоты Q=21 кДж. Определить работу А, которую совершил при этом газ, и изменение его внутренней энергии DU.
253. Водород массой m=4 г был нагрет на DТ=10 К при постоянном давлении. Определить работу расширения газа.
254. Какая работа А совершается при изотермическом расширении водорода массой m=5 г, взятого при температуре 290 К, если объем увеличивается в три раза?
255. Расширяясь, водород совершил работу А=6 кДж. Определить количество теплоты Q, подведенное к газу, если процесс происходит:1) изобарически;
2) изотермически.
256. Водород при нормальных условиях имел объем V1=100 м3. Найти изменение DU внутренней энергии газа при его адиабатическом расширении до объема V2=150 м3.
257. 1 кг воздуха, находящегося при температуре 300 С и давлении 1,5 атм, расширяется адиабатически и давление при этом падает до 1 атм. Найти:
1) конечную температуру; 2) работу, совершенную газом при расширении.
258. 1 кмоль кислорода находится при нормальных условиях, а затем его объем увеличивается до V=5V0. Построить график зависимости p(V), если:
1) расширение происходит изотермически; 2) адиабатически. Значения р найти для объемов: V0, 2V0, 3V0, 4V0, 5V0.
259. Некоторая масса газа, занимающего объем V1=0,01 м3, находится при давлении Р1=0,1 МПа и температуре Т1=300 К. Газ нагревается вначале при постоянном объеме до температуры Т2=320 К, а затем при постоянном давлении до температуры Т3=350 К. Найти работу, совершаемую газом при переходе из состояния 1 в состояние 3.
260. 1 кмоль азота, находящегося при нормальных условиях, расширяется адиабатически от объема V1 до объема V2=5V1. Найти: 1) изменение внутренней энергии газа; 2) работу, совершенную при расширении.
261. Идеальный двухатомный газ, содержащий количество вещества n=1 моль, находящийся под давлением р1=0,1 МПа при температуре Т1=300 К, нагревают при постоянном объеме до давления р2=0,2 МПа. После этого газ изотермически расширился до начального давления, а затем изобарически был сжат до начального объема V1. Построить график цикла. Определить температуру Т газа для характерных точек цикла и КПД цикла.
262. Идеальный многоатомный газ совершает цикл, состоящий из двух изохор и двух изобар, причем наибольшее давление газа в два раза больше наименьшего, а наибольший объем в четыре раза больше наименьшего. Определить кпд цикла.
263. В результате кругового процесса газ совершил работу А=1 Дж и передал охладителю количество теплоты Q2=4,2 Дж. Определить КПД цикла.
264. Идеальный газ совершает цикл Карно. Температура охладителя равна 290 К. Во сколько раз увеличится КПД цикла, если температура нагревателя повысится от 400 К до 600 К?
265. Идеальный газ совершает цикл Карно, получив от нагревателя количество теплоты Q1=4,2 кДж, совершил работу А=590 Дж. Найти КПД цикла. Во сколько раз температура Т1 нагревателя больше температуры Т2охладителя?
266. Идеальный газ совершает цикл Карно. Работа А1 изотермического расширения равна 5 Дж. Определить работу А2 изотермического сжатия, если КПД цикла равен 0,2.
267. Определить КПД цикла, состоящего из двух адиабат и двух изохор, совершаемого идеальным газом, если известно, что в процессе адиабатного расширения абсолютная температура газа Т2=0,75Т1, а в процессе адиабатного сжатия Т3=0,75Т4.
268. Идеальная тепловая машина, работающая по циклу Карно, имеет температуру нагревателя 2270 С, температуру холодильника 127 0С. Во сколько раз нужно увеличить температуру нагревателя, чтобы КПД машины увеличился в 3 раза?
269. Идеальная тепловая машина, работающая по циклу Карно, получает за каждый цикл от нагревателя 2514 Дж. Температура нагревателя 400 К, холодильника – 300 К. Найти работу, совершаемую машиной за один цикл, и количество тепла, отдаваемое холодильнику за один цикл.
270. Идеальная тепловая машина работает по циклу Карно. Определить КПД цикла, если известно, что за один цикл была произведена работа, равная 3000 Дж, и холодильнику было передано 13,4×103 Дж.
271. В результате изохорического нагревания водорода массой m=1 г давление р газа увеличилось в 2 раза. Определить изменение DS энтропии газа.
272. Найти изменение DS энтропии при изобарическом расширении азота массой m=4 г от объема V1=5 л до объема V2=9 л.
273. Кислород массой m=2 кг увеличил свой объем в 5 раз один раз изотермически, другой – адиабатически. Найти изменение энтропии в каждом из указанных процессов.
274. Водород массой m=100 г был изобарически нагрет так, что его объем увеличился в 3 раза, затем водород был изохорически охлажден так, что давление его уменьшилось в 3 раза. Найти изменение энтропии в ходе указанных процессов.
275. Найти изменение энтропии при переходе 8 г кислорода от объема в 10 л при температуре 80 0С к объему в 40 л при температуре 300 0С.
276. 6,6 г водорода расширяется изобарически до увеличения объема в два раза. Найти изменение энтропии при этом расширении.
277. Найти изменение энтропии DS 5 г водорода, изотермически расширившегося от объема 10 л до объема 25 л.
278. Найти приращение энтропии DS при расширении 2 г водорода от объема 1,5 л до объема 4,5 л, если процесс расширения происходит при постоянном давлении.
279. 10 г кислорода нагреваются от t1=50 0С до t2=150 0С. Найти изменение энтропии, если нагревание происходит: 1) изохорически; 2) изобарически.
280. При нагревании 1 кмоля двухатомного газа его абсолютная температура увеличивается в 1,5 раза. Найти изменение энтропии, если нагревание происходит: 1) изохорически; 2) изобарически.
Таблица №1
Варианты для решения задач по теме
“Механика и элементы специальной теории относительности”
Варианты | Номер задачи | |||||||
1 | 101 | 111 | 121 | 131 | 141 | 151 | 161 | 171 |
2 | 102 | 112 | 122 | 132 | 142 | 152 | 162 | 172 |
3 | 103 | 113 | 123 | 133 | 143 | 153 | 163 | 173 |
4 | 104 | 114 | 124 | 134 | 144 | 154 | 164 | 174 |
5 | 105 | 115 | 125 | 135 | 145 | 155 | 165 | 175 |
6 | 106 | 116 | 126 | 136 | 146 | 156 | 166 | 176 |
7 | 107 | 117 | 127 | 137 | 147 | 157 | 167 | 177 |
8 | 108 | 118 | 128 | 138 | 148 | 158 | 168 | 178 |
9 | 109 | 119 | 129 | 139 | 149 | 159 | 169 | 179 |
10 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
11 | 101 | 112 | 123 | 134 | 145 | 156 | 167 | 178 |
12 | 102 | 113 | 124 | 135 | 146 | 157 | 168 | 179 |
13 | 103 | 114 | 125 | 136 | 147 | 158 | 169 | 180 |
14 | 104 | 115 | 126 | 137 | 148 | 159 | 170 | 171 |
15 | 105 | 116 | 127 | 138 | 149 | 160 | 161 | 172 |
16 | 106 | 117 | 128 | 139 | 150 | 151 | 162 | 173 |
17 | 107 | 118 | 129 | 140 | 141 | 152 | 163 | 174 |
18 | 108 | 119 | 130 | 131 | 142 | 153 | 164 | 175 |
19 | 109 | 120 | 121 | 132 | 143 | 154 | 165 | 176 |
20 | 110 | 111 | 122 | 133 | 144 | 155 | 166 | 177 |
Таблица №2
Варианты для решения задач по теме
“Основы молекулярной физики и термодинамики”
Варианты | Номера задач | |||||||
1 | 201 | 211 | 221 | 231 | 241 | 251 | 261 | 271 |
2 | 202 | 212 | 222 | 232 | 242 | 252 | 262 | 272 |
3 | 203 | 213 | 223 | 233 | 243 | 253 | 263 | 273 |
4 | 204 | 214 | 224 | 234 | 244 | 254 | 264 | 274 |
5 | 205 | 215 | 225 | 235 | 245 | 255 | 265 | 275 |
6 | 206 | 216 | 226 | 236 | 246 | 256 | 266 | 276 |
7 | 207 | 217 | 227 | 237 | 247 | 257 | 267 | 277 |
8 | 208 | 218 | 228 | 238 | 248 | 258 | 268 | 278 |
9 | 209 | 219 | 229 | 239 | 249 | 259 | 269 | 279 |
10 | 210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 |
11 | 201 | 212 | 223 | 234 | 245 | 256 | 267 | 278 |
12 | 202 | 213 | 224 | 235 | 246 | 257 | 268 | 279 |
13 | 203 | 214 | 225 | 236 | 247 | 258 | 269 | 280 |
14 | 204 | 215 | 226 | 237 | 248 | 259 | 270 | 271 |
15 | 205 | 216 | 227 | 238 | 249 | 260 | 261 | 272 |
16 | 206 | 217 | 228 | 239 | 250 | 251 | 262 | 273 |
17 | 207 | 218 | 229 | 240 | 241 | 252 | 263 | 274 |
18 | 208 | 219 | 230 | 231 | 242 | 253 | 264 | 275 |
19 | 209 | 220 | 221 | 232 | 243 | 254 | 265 | 276 |
20 | 210 | 211 | 222 | 233 | 244 | 255 | 266 | 277 |
1. Дмитриева В.Ф. Физика. М.: ВШ, 1993. 415 с.
2. Савельев И.В. Курс общей физики. Т.1. Механика. Молекулярная физика. М.: Наука, 1982. 432 с.
3. Зисман Г.А., Тодес О.М. Курс общей физики Т.1. Механика, молекулярная физика, колебания и волны. М.: Наука, 1969. 340 с.
4. Фирганг Е.В. Руководство к решению задач по курсу общей физики. М.: ВШ, 1977. 351 с.
5. Чертов А.Г., Воробьев А.А. Задачник по физике. М.: ВШ, 1988. 527 с.
Содержание
Введение
Содержание теоретического курса |
Требования к оформлению контрольных заданий и по исследованию таблиц |
Механика и элементы специальной теории относительности |
Контрольное задание №1 |
Основы молекулярной физики и термодинамики |
Контрольное задание №2 |
Список литературы
... значениями этих параметров, чтобы определить предельные значения и шаг расчёта рассчитываемых параметров. Заключение Хочется выразить уверенность, что в следующих версиях курса "Открытая физика" количество компьютерных моделей будет расти, их функциональные возможности станут разнообразнее, а пределы изменения числовых значений параметров, описывающих эксперименты, будут расширены. Надеемся, что ...
... это количество вещества, взятая в количестве 1 моля. g - количество вещества или число молей. [g]= моль [m]= кг/моль Билет № 7 1. Важным понятием в молекулярной физике и термодинамике является понятие термодинамической системы, к рассмотрению которого мы и переходим. 1.Термодинамической системой (или просто системой) называют совокупность большого числа молекул, атомов или ионов ...
... что разрешало противоречие между результатами Гей-Люссака и Дальтона. Успехи учения об атомно-молекулярном строении вещества, в особенности, газов, безусловно, оказало влияние на становление термодинамики и молекулярной физики и способствовало развитию механической теории теплоты. Во второй половине 18 века господствовала теория теплорода, но уже в начале 19 века она стала уступать свои позиции ...
... : Будем считать величину , измеряемую в энергетических единицах, прямо пропорциональной температуре , выражаемой в градусах: , где - коэффициент пропорциональности. Коэффициент , в честь австрийского физика Л.Больцмана называется постоянной Больцмана. Следовательно, . Температура, определяемая этой формулой, не может быть отрицательной. Следовательно, наименьшим возможным значением температуры ...
0 комментариев