Динамика поступательного и вращательного движения

Механика, молекулярная физика и термодинамика
Каждый этап решения задачи сопровождать краткими, но исчерпывающими пояснениями Основная задача кинематики Динамика поступательного и вращательного движения Некоторые силы в механике Потенциальная энергия Элементы специальной теории относительности Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct Маховик радиусом R=0,2 м и массой m=10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения Молекуляро - кинетическая теория идеальных газов Внутренняя энергия Распределение Больцмана Основы термодинамики Применение первого начала термодинамики к изопроцессам Цикл Карно и теорема Карно Фазовое пространство. Микро- и макро- состояния системы Двухатомному газу сообщено 500 кал тепла. При этом газ расширяется при постоянном давлении. Найти работу расширения газа Углекислый газ и азот находятся при одинаковых температуре и давлении. Найти для этих газов отношение коэффициентов внутреннего трения
121629
знаков
26
таблиц
25
изображений

2. Динамика поступательного и вращательного движения.

2.1.  Законы Ньютона Первый закон Ньютона: Всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.

Тела, не подверженные внешним воздействиям, называются свободными телами. Первый закон будет выполняться только в инерциальных системах отсчёта (ИСО). ИСО - система отсчёта, связанная со свободным телом, по отношению к ней любое свободное тело будет двигаться равномерно и прямолинейно или находиться в состоянии покоя. Из относительности движения следует, что система отсчёта, движущаяся равномерно и прямолинейно по отношению к ИСО, также является ИСО. ИСО играют важную роль во всех разделах физики. Это связано с принципом относительности Эйнштейна, согласно которому математическая форма любого физического закона должна иметь один и тот же вид во всех инерциальных системах отсчёта.

К основным понятиям, используемым в динамике поступательного движения, относятся сила, масса тела, импульс тела (системы тел).

Силой называется векторная физическая величина, являющаяся мерой механического действия одного тела на другое. Механическое действие возникает как при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.), так и посредством силового поля, существующего в пространстве (сила тяжести, кулоновские силы и т.д.). Сила  характеризуется модулем, направлением и точкой приложения.

Одновременное действие на тело нескольких сил ,,..., может быть заменено действием результирующей (равнодействующей) силы :

=++...+=.

Массой тела называется скалярная величина, являющаяся мерой инертности тела. Под инертностью понимается свойство материальных тел сохранять свою скорость неизменной в отсутствии внешних воздействий и изменять её постепенно (т.е. с конечным ускорением) под действием силы. Массы всех тел определяются по отношению к массе тела, принятого за эталон.

Импульсом тела (материальной точки) называется векторная физическая величина, равная произведению массы тела на его скорость: .

 Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему: .

Второй закон Ньютона: скорость изменения импульса тела равна действующей на него силе:

.

В частном случае (при постоянной массе): ускорение, приобретаемое телом относительно инер­ци­аль­ной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

.

  Третий закон Ньютона: Силы, с которыми действуют друг на друга взаимо­дей­ствующие тела, равны по величине и противоположны по направлению.

,

где - сила, действующая на 1-ую точку со стороны 2-ой,

- сила, действующая на 2-ую точку со стороны 1-ой.

Из третьего закона следует, что в любой механической системе материальных то­чек геометрическая сумма всех внутренних сил (т.е. сил, с которыми взаимо­действуют между собой материальные точки системы) равна нулю.

2.2. Динамика вращательного движения твердого тела.

Вращательное действие силы харак­те­ризуется такой величиной, как мо­мент силы относительно оси вращения  (рис. 5).

Пусть М - точка приложения силы , - радиус-вектор точки М, проведённый пер­пен­дикулярно оси вращения O'O. Разложим  на три составляющие:

- осевая, параллельная оси вращения,

- радиальная, направленная вдоль вектора ,

- касательная, перпендикулярная  и оси вращения.

Составляющие  и  - вращения тела вокруг оси O'O не создают. Вращающее действие силы  создаётся составляющей . Моментом силы  относительно оси вращения O'O называется векторное произведение радиуса-вектора  точки приложения силы, проведённого перпен­дикулярно оси вращения, на составляющую силы , перпендикулярную оси вращения и радиусу вектору :

.

Вектор момента силы направлен вдоль оси вращения и связан с направлением силы правилом правого винта.

Если на тело действует несколько сил, то результирующий момент сил равен векторной сумме моментов всех сил, действующих на тело.

Момент инерции тела характеризует инертные свойства тела при вращательном движении и зависит от распределения массы тела относительно оси вращения.

Подпись: Рис. 5


 - момент инерции материальной точки массой m, находящейся на расстоянии r от оси.

 - момент инерции системы материальных точек.

 - момент инерции тела, где  - плотность тела.

Момент инерции тела относительно произвольной оси может быть рассчитан по

теореме Штейнера: момент инерции тела

относительно оси O'O равен сумме момента инерции тела относительно оси, проходящей через центр масс и параллельной O'O, и произведения массы тела на квадрат расстояния между осями (рис. 6):

.

Моментом импульса материальной точки называется векторная величина, равная векторному произведению радиуса вектора  на импульс точки (рис. 7):

.

Моментом импульса системы материальных точек называется геометрическая сумма моментов импульсов точек, составляющих систему:

Рис. 6  

Моментом импульса тела относительно оси вращения называется величина

,

где - момент инерции тела относительно данной оси.

Рис. 7

 

Основной закон динамики вращательного движения:

Скорость изменения момента импульса тела относительно оси равна результирующему моменту внеш­них сил относительно той же оси. При постоянном моменте инерции угловое ускорение, приобретаемое телом, пропор­ционально моменту сил, приложенных к телу, и обратно пропорционально моменту инерции тела:

.

Из законов динамики поступательного и вращательного движений следует условие равновесия тел:



Информация о работе «Механика, молекулярная физика и термодинамика»
Раздел: Физика
Количество знаков с пробелами: 121629
Количество таблиц: 26
Количество изображений: 25

Похожие работы

Скачать
40136
0
23

... значениями этих параметров, чтобы определить предельные значения и шаг расчёта рассчитываемых параметров. Заключение Хочется выразить уверенность, что в следующих версиях курса "Открытая физика" количество компьютерных моделей будет расти, их функциональные возможности станут разнообразнее, а пределы изменения числовых значений параметров, описывающих эксперименты, будут расширены. Надеемся, что ...

Скачать
147222
0
1

... это количество вещества, взятая в количестве 1 моля.   g - количество вещества или число молей. [g]= моль [m]= кг/моль Билет № 7   1. Важным понятием в молекулярной физике и термодинамике является понятие термодинамической системы, к рассмотрению которого мы и пе­реходим. 1.Термодинамической системой (или просто системой) называют совокупность большого числа молекул, атомов или ионов ...

Скачать
24048
0
0

... что разрешало противоречие между результатами Гей-Люссака и Дальтона. Успехи учения об атомно-молекулярном строении вещества, в особенности, газов, безусловно, оказало влияние на становление термодинамики и молекулярной физики и способствовало развитию механической теории теплоты. Во второй половине 18 века господствовала теория теплорода, но уже в начале 19 века она стала уступать свои позиции ...

Скачать
31367
0
1

... : Будем считать величину , измеряемую в энергетических единицах, прямо пропорциональной температуре , выражаемой в градусах: , где - коэффициент пропорциональности. Коэффициент , в честь австрийского физика Л.Больцмана называется постоянной Больцмана. Следовательно, . Температура, определяемая этой формулой, не может быть отрицательной. Следовательно, наименьшим возможным значением температуры ...

0 комментариев


Наверх