Потенциальная энергия

Механика, молекулярная физика и термодинамика
Каждый этап решения задачи сопровождать краткими, но исчерпывающими пояснениями Основная задача кинематики Динамика поступательного и вращательного движения Некоторые силы в механике Потенциальная энергия Элементы специальной теории относительности Мгновенное ускорение получим, если продифференцируем по времени выражение для скорости: a = 2×3×Ct = 6Ct Маховик радиусом R=0,2 м и массой m=10 кг соединен с мотором при помощи приводного ремня. Сила натяжения ремня, идущего без скольжения Молекуляро - кинетическая теория идеальных газов Внутренняя энергия Распределение Больцмана Основы термодинамики Применение первого начала термодинамики к изопроцессам Цикл Карно и теорема Карно Фазовое пространство. Микро- и макро- состояния системы Двухатомному газу сообщено 500 кал тепла. При этом газ расширяется при постоянном давлении. Найти работу расширения газа Углекислый газ и азот находятся при одинаковых температуре и давлении. Найти для этих газов отношение коэффициентов внутреннего трения
121629
знаков
26
таблиц
25
изображений

3.4. Потенциальная энергия.

 

Потенциальная энергия системы - это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил. Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.

ЕП1 - ЕП2 = -DЕП = А12конс, .

Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.

.

Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень.

Свойства потенциальной энергии:

1. Потенциальная энергия является конечной, однозначной, непрерывной функцией механического состояния системы.

2. Численное значение потенциальной энергии зависит от выбора уровня с нулевой потенциальной энергией.

Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии:

,

причем: , , .

Примеры потенциальной энергии:

1) - потенциальная энергия тела массой m, поднятого на высоту h от нулевого уровня энергии в поле тяжести Земли;

2)   - потенциальная энергия упругого деформированного тела, х - модуль деформации тела.


4. Законы сохранения в механике.

4.1. Закон сохранения полной механической энергии.

 

Полная механическая энергия системы тел равна сумме их кинетической и потенциальной энергии взаимодействия этих тел друг с другом и с внешними телами:

Е = Ек + Еп.

Приращение механической энергии системы определяется работой всех неконсервативных сил (внешних и внутренних):

.

Закон сохранения полной механической энергии: Полная механическая энергия системы тел, на которые действуют только консервативные силы, остается постоянной.

В замкнутой системе полная механическая энергия остается постоянной, если между телами, составляющими систему, действуют только консервативные силы.

4.2. Закон сохранения импульса. Центральный удар двух тел.

Закон сохранения импульса: Полный импульс замкнутой системы остается посто­янным.

Для замкнутой системы будут сохраняться и проекции импульса на координатные оси:

.

Если ¹0, но =0, то будет сохраняться проекция импульса системы на ось Х.

Рассмотрим центральный удар двух тел. Центральным называется удар, при котором тела движутся вдоль прямой, соединяющей их центры масс. Выделяют два предельных вида такого удара: абсолютно упругий и абсолютно неупругий.

Для двух тел массами m1 и m2 , движущихся со скоростями  и  вдоль оси X навстречу друг другу, скорости их после абсолютно упругого центрального удара можно найти по формулам:

; .

При этом сохраняется импульс системы тел и полная механическая энергия.

Если удар абсолютно неупругий, то

.

Тела после такого удара движутся вместе. Импульс системы тел сохраняется, а полная механическая энергия не сохраняется. Часть механической энергии переходит в энергию неупругой деформации и во внутреннюю энергию тел.

4.3. Закон сохранения момента импульса.

 

Закон сохранения момента импульса: Момент импульса системы тел сохраняется, если результирующий момент внешних сил, действующих на систему, равен нулю:

.

Если результирующий момент внешних сил не равен нулю, но рана нулю проекция этого момента на некоторую ось, то проекция момента импульса системы на эту ось не изменяется.



Информация о работе «Механика, молекулярная физика и термодинамика»
Раздел: Физика
Количество знаков с пробелами: 121629
Количество таблиц: 26
Количество изображений: 25

Похожие работы

Скачать
40136
0
23

... значениями этих параметров, чтобы определить предельные значения и шаг расчёта рассчитываемых параметров. Заключение Хочется выразить уверенность, что в следующих версиях курса "Открытая физика" количество компьютерных моделей будет расти, их функциональные возможности станут разнообразнее, а пределы изменения числовых значений параметров, описывающих эксперименты, будут расширены. Надеемся, что ...

Скачать
147222
0
1

... это количество вещества, взятая в количестве 1 моля.   g - количество вещества или число молей. [g]= моль [m]= кг/моль Билет № 7   1. Важным понятием в молекулярной физике и термодинамике является понятие термодинамической системы, к рассмотрению которого мы и пе­реходим. 1.Термодинамической системой (или просто системой) называют совокупность большого числа молекул, атомов или ионов ...

Скачать
24048
0
0

... что разрешало противоречие между результатами Гей-Люссака и Дальтона. Успехи учения об атомно-молекулярном строении вещества, в особенности, газов, безусловно, оказало влияние на становление термодинамики и молекулярной физики и способствовало развитию механической теории теплоты. Во второй половине 18 века господствовала теория теплорода, но уже в начале 19 века она стала уступать свои позиции ...

Скачать
31367
0
1

... : Будем считать величину , измеряемую в энергетических единицах, прямо пропорциональной температуре , выражаемой в градусах: , где - коэффициент пропорциональности. Коэффициент , в честь австрийского физика Л.Больцмана называется постоянной Больцмана. Следовательно, . Температура, определяемая этой формулой, не может быть отрицательной. Следовательно, наименьшим возможным значением температуры ...

0 комментариев


Наверх