7. Производная
7.1 Производная, правила и формулы дифференцирования
Пусть функция y = f(x) определена в промежутке X. Производной функции y = f(x) в точке хo называется предел
= .
Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.
Если же рассматриваемый предел равен ¥ (или - ¥), то при условии, что функция в точке хo непрерывна, будем говорить, что функция f(x) имеет в точке хo бесконечную производную.
Производная обозначается символами
y ¢, f ¢(xo), , .
Нахождение производной называется дифференцированием функции. Геометрический смысл производной состоит в том,что производная есть угловой коэффициент касательной к кривой y=f(x) в данной точке хo; физический смысл - в том, что производная от пути по времени есть мгновенная скорость движущейся точки при прямолинейном движении s = s(t) в момент to.
Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
1) (с)' = 0, (cu)' = cu';
2) (u+v)' = u'+v';
3) (uv)' = u'v+v'u;
4) (u/v)' = (u'v-v'u)/v2;
5) если y = f(u), u = j(x), т.е. y = f(j(x)) - сложная функция, или суперпозиция, составленная из дифференцируемых функций j и f, то , или
;
6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем ¹ 0, то .
На основе определения производной и правил дифференцирования можно составить список табличных производных основных элементарных функций.
1. (um)' = m um-1 u' (m Î R).
2. (au)' = au lna× u'.
3. (eu)' = eu u'.
4. (loga u)' = u'/(u ln a).
5. (ln u)' = u'/u.
6. (sin u)' = cos u× u'.
7. (cos u)' = - sin u× u'.
8. (tg u)' = 1/ cos2u× u'.
9. (ctg u)' = - u' / sin2u.
10. (arcsin u)' = u' /.
11. (arccos u)' = - u' /.
12. (arctg u)' = u'/(1 + u2).
13. (arcctg u)' = - u'/(1 + u2).
Вычислим производную степенно-показательного выражения y=uv, (u>0), где u и v суть функции от х, имеющие в данной точке производные u', v'.
Прологарифмировав равенство y=u v, получим ln y = v ln u.
Приравнивая производные по х от обеих частей полученного равенства с помощью правил 3, 5 и формулы для производной логарифмической функции, будем иметь:
y'/y = vu'/u +v' ln u, откуда y' = y (vu'/u +v' ln u).
Итак,
(u v)'=u v (vu'/u+v' ln u), u > 0.
Например, если y = x sin x, то y' = x sin x (sin x/x + cos x× ln x).
Если функция y = f(x) дифференцируема в точке x, т.е. имеет в этой точке конечную производную y', то = y'+a, где a®0 при Dх® 0; отсюда D y = y' Dх + a x.
Главная часть приращения функции, линейная относительно Dх, называется дифференциалом функции и обозначается dy: dy = y' Dх. Если положить в этой формуле y=x, то получим dx = x'Dх = 1×Dх =Dх, поэтому dy=y'dx, т. е. символ для обозначения производной можно рассматривать как дробь.
Приращение функции D y есть приращение ординаты кривой, а дифференциал dy есть приращение ординаты касательной.
Пусть мы нашли для функции y=f(x) ее производную y ¢= f ¢(x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается .
Аналогично определяются и обозначаются:
производная третьего порядка - ,
производная четвертого порядка -
и вообще производная n-го порядка - .
Пример 3.15. Вычислить производную функции y=(3x3-2x+1)×sin x.
Решение. По правилу 3, y'=(3x3-2x+1)'×sin x + (3x3-2x+1)×(sin x)' = = (9x2-2)sin x + (3x3-2x+1)cos x.
Пример 3.16. Найти y', y = tg x +.
Решение. Используя правила дифференцирования суммы и частного, получим: y'=(tgx + )' = (tgx)' + ()' = + = .
Пример 3.17. Найти производную сложной функции y=, u=x4 +1.
Решение. По правилу дифференцирования сложной функции, получим: y'x =y'u u'x =()'u(x4 +1)'x =(2u +. Так как u=x4 +1,то (2 x4 +2+.
Пример 3.18. Найти производную функции y=.
Решение. Представим функцию y= в виде суперпозиции двух функций: y = eu и u = x2. Имеем: y'x =y'u u'x = (eu)'u(x2)'x = eu ×2x. Подставляя x2 вместо u, получим y=2x.
Пример 3.19. Найти производную функции y=ln sin x.
Решение. Обозначим u=sin x, тогда производная сложной функции y=ln u вычисляется по формуле y' = (ln u)'u(sin x)'x= .
Пример 3.20. Найти производную функции y=.
Решение. Случай сложной функции, полученной в результате нескольких суперпозиций, исчерпывается последовательным применением правила 5:
.
Пример 3.21. Вычислить производную y=ln .
Решение. Логарифмируя и используя свойства логарифмов, получим:
y=5/3ln(x2+4) +7/3ln(3x-1)-2/3ln(6x3+1)-1/3tg 5x.
Дифференцируя обе части последнего равенства, получим:
.
... метод потенциалов. Однако на распределительном методе основаны некоторые другие способы решения задач, что и вызывает необходимость его изучения. [5] 9. Метод потенциалов Решение транспортной задачи любым способом производится на макете. Макет для применения метода потенциалов имеет следующий вид. Основная часть макета выделена двойными линиями. Она содержит k×l клеток. Каждая ...
... признакам следует выделить два основных вида игр, несущих наибольшую образовательную нагрузку, так как все остальные являются производными от них. Этими видами являются инновационные игры и ансамблевые игры. Имитационные или ролевые игры позволяют обучать персонал практически с нуля, в то время как два предыдущих вида больше связаны с развивающим обучением. Назначение деловых игр Деловая ...
... из остальных факторов мало что удастся сделать. Когда я поступил в корпорацию "Крайслер", то взял с собой мои записные книжки из компании "Форд", в которых была отражена служебная карьера нескольких сот фордовских менеджеров. После увольнения я набросал подробный перечень того, что не хотел оставлять в кабинете. Эти записные книжки в черных переплетах, несомненно, принадлежали мне, но можно было ...
... . научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев. (38) Связь между разделами естествознания. Слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время ...
0 комментариев