8. Интегралы
8.1 Основные методы интегрирования
Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x Î X справедливо равенство:
F¢ (x) = f(x). (8.1)
Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -
ò f(x) dx.
Если F(x) - какая-нибудь первобразная для функции f(x), то
ò f(x)dx = F(x) + C, (8.2)
где С - произвольная постоянная.
Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:
1) d ò f(x)=f(x)dx,
2) ò df(x)=f(x)+C,
3) ò af(x)dx=aò f(x)dx (a=const),
4) ò(f(x)+g(x))dx= ò f(x)dx+ ò g(x)dx.
Список табличных интегралов
1. ò xmdx = xm+1/(m + 1) +C (m ¹ -1).
2.= ln êx ê +C.
3. ò ax dx = ax/ln a + C (a>0, a¹1).
4. ò ex dx = ex + C.
5. ò sin x dx = cos x + C.
6. ò cos x dx = - sin x + C.
7. = arctg x + C.
8. = arcsin x + C.
9. = tg x + C.
10. = - ctg x + C.
Для интегрирования многих функций применяют метод замены переменной, или подстановки, позволяющий приводить интегралы к табличной форме.
Если функция f(z) непрерывна на [a, b], функция z=g(x) имеет на [a,b] непрерывную производную и a £ g(x) £b, то
ò f(g(x)) g¢ (x) dx = ò f(z) dz, (8.3)
причем после интегрирования в правой части следует сделать подстановку z=g(x).
Для доказательства достаточно записать исходный интеграл в виде:
ò f(g(x)) g¢ (x) dx = ò f(g(x)) dg(x).
Например:
1) ;
2).
Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные производные. Тогда, по правилу дифференцирования произведения,
d(uv)= udv + vdu или udv = d(uv) -vdu.
Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:
ò udv = uv - ò vdu. (8.4)
Эта формула выражает правило интегрирования по частям. Оно приводит интегрирование выражения udv=uv'dx к интегрированию выражения vdu=vu'dx.
Пусть, например, требуется найти ò x cosx dx. Положим u = x, dv = cos x dx, так что du=dx, v=sinx. Тогда
ò x cos x dx = ò x d(sin x) = x sin x - ò sin x dx = x sin x + cos x + C.
Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,
ò xk lnmx dx, ò xk sin bx dx, ò xk cos bx dx, ò xk e ax dx
и другие, которые вычисляются именно с помощью интегрирования по частям.
Понятие определенного интеграла вводится следующим образом. Пусть на отрезке [a, b] определена функция f(x). Разобьем отрезок [a, b] на n частей точками a = x0 < x1 <...<xn = b. Из каждого интервала (xi-1, xi) возьмем произвольную точку xi и составим сумму f(xi)D xi, где D xi = xi - xi-1. Сумма вида f(xi)D xi называется интегральной суммой, а ее предел при l = max D xi ®0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:
f(xi)D xi. (8.5)
Функция f(x) в этом случае называется интегрируемой на отрезке [a, b], числа a и b носят название нижнего и верхнего предела интеграла.
Для определенного интеграла справедливы следующие свойства:
1) ;
2) ;
3) - ;
4) , (k = const, kÎR);
5) ;
6) ;
7) f(x)(b-a) (xÎ[a,b]).
Последнее свойство называется теоремой о среднем значении.
Пусть f(x) непрерывна на [a, b]. Тогда на этом отрезке существует неопределенный интеграл
ò f(x) dx = F(x) + C
и имеет место формула Ньютона-Лейбница, cвязывающая определенный интеграл с неопределенным:
F(b) - F(a). (8.6)
Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y= f(x), прямыми x = a и x = b и отрезком оси Ox.
Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:
. (8.7)
Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+¥), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+¥). В противном случае про интеграл говорят, что он не существует, или расходится.
Аналогично определяются несобственные интегралы на интервалах (-¥, b] и (-¥, +¥):
.
Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка [a,b], кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:
,
если эти пределы существуют и конечны. Обозначение:
= . (8.8)
Пример 3.30. Вычислить ò dx/(x+2).
Решение. Обозначим t=x+2, тогда dx=dt, ò dx/(x+2) = ò dt/t = lnïtï+C = = lnïx+2ï+C.
Пример 3.31. Найти ò tg x dx.
Решение. ò tg x dx = ò sin x/cos x dx = - ò d(cos x)/ cos x. Пусть t=cos x, тогда ò tg x dx = - ò dt/t = - lnïtï+C = - lnïcos xï+C.
Пример 3.32. Найти ò dx/sin x.
Решение.
Пример 3.33. Найти .
Решение. =
Пример 3.34. Найти ò arctg x dx.
Решение. Обозначим u=arctg x, dv=dx. Тогда du = dx/(x2+1), v=x, откуда ò arctg x dx = x arctg x - ò x dx/(x2+1) = x arctg x + 1/2 ln(x2+1) +C; так как ò x dx/(x2+1) = 1/2 ò d(x2+1)/(x2+1) = 1/2 ln(x2+1) +C.
Пример 3.35. Вычислить ò ln x dx.
Решение. Применяя формулу интегрирования по частям, получим: u=ln x, dv=dx, du= 1/x dx, v=x. Тогда ò ln x dx = x lnx - ò x 1/x dx = = x lnx - ò dx = x lnx - x + C.
Пример 3.36. Вычислить ò ex sin x dx.
Решение. Обозначим u = ex, dv = sin x dx, тогда du = ex dx, v=ò sin x dx= - cos x Þ ò ex sin x dx = - ex cos x + ò ex cos x dx. Интеграл ò ex cos x dx также интегрируем по частям: u = ex, dv = cos x dx Þ du=exdx, v=sin x. Имеем: ò ex cos x dx = ex sin x - ò ex sin x dx. Получили соотношение ò ex sin x dx = - ex cos x + ex sin x - ò ex sin x dx, откуда 2 ò ex sin x dx = - ex cos x + ex sin x + С.
Пример 3.37. Вычислить J = ò cos(ln x)dx/x.
Решение. Так как dx/x = d(ln x), то J= ò cos(ln x)d(ln x). Заменяя ln x через t, приходим к табличному интегралу J = ò cos t dt = sin t + C = sin(ln x) + C.
Пример 3.38. Вычислить J = .
Решение. Учитывая, что = d(ln x), производим подстановку ln x = t. Тогда J = .
Пример 3.39. Вычислить интеграл J = .
Решение. Имеем: . Поэтому = = =.
Пример 3.40. Можно ли применить формулу Ньютона-Лейбница к интегралу ?
Решение. Нет, нельзя. Если формально вычислять этот интеграл по формуле Ньютона-Лейбница, то получим неверный результат. Действительно, = .
Но подынтегральная функция f(x) = > 0 и, следовательно, интеграл не может равняться отрицательному числу. Суть дела заключается в том, что подынтегральная функция f(x) = имеет бесконечный разрыв в точке x = 4, принадлежащей промежутку интегрирования. Следовательно, здесь формула Ньютона-Лейбница неприменима.
Пример 3.41. Вычислить интеграл .
Решение. Подынтегральная функция определена и непрерывна при всех значениях х и, следовательно, имеет первообразную F(x)= .
По определению имеем: = .
По формуле Ньютона-Лейбница,
= F(b) - F(0) = += ;
= = .
8.2Использование интегралов в экономических расчетах
Пример 3.42. Определить объем продукции, произведенной рабочим за третий час рабочего дня, если производительность труда характеризуется функцией
f(t) = 3/(3t +1) + 4.
Решение. Если непрерывная функция f(t) характеризует производительность труда рабочего в зависимости от времени t, то объем продукции, произведенной рабочим за промежуток времени от t1 до t2 будет выражаться формулой
V =.
В нашем случае
V = = ln 10 + 12 - ln 7 - 8 = ln 10/7 + 4.
Пример 3.43. Определить запас товаров в магазине, образуемый за три дня, если поступление товаров характеризуется функцией f(t) = 2t + 5.
Решение. Имеем:
V =.
Пример 3.44. Пусть сила роста (см.6.1) описывается некоторой непрерывной функцией времени d t = f(t), тогда наращенная сумма находится как
S = P exр d t dt,
а современная величина платежа P = S exр(- d t dt).
Если, в чаcтности, d t является линейной функцией времени: d t = d o + at, где d o - величина силы роста для t = 0, a - годовой прирост, то
d t dt = (d o + at)dt = d o n + an2/2;
множитель наращения exр(d o n + an2/2). Если сила роста изменяется по геометрической прогрессии d t = d o at, где d o - начальное значение процентной ставки, a - годовой коэффициент роста, тогда
d t dt = d o at dt = d o at /lna= d o(an -1)/lna;
множитель наращения exр(d o(an -1) / lna).
Предположим, что начальный уровень силы роста равен 8%, процентная ставка ежегодно увеличивается на 20% (a=1,2), срок ссуды 5 лет. Множитель наращения в этом случае составит exр (0,08 (1,25-1) / ln1,2) » » exр 0,653953 » 1,921397.
Пример 3.45. Выше при анализе непрерывных потоков платежей предполагалось, что годовая сумма ренты R равномерно распределяется на протяжении года. На практике, особенно в инвестиционных процессах, этот поток может существенно изменяться во времени, следуя какому-либо закону. Если этот поток непрерывен и описывается некоторой функцией R t = f (t), то общая сумма поступлений за время n равна .
В этом случае наращенная по непрерывной ставке за период от 0 до n сумма составит:
S = .
Современная величина такого потока равна
A = .
Пусть функция потока платежей является линейной: Rt = Ro + at, где Ro - начальная величина платежа, выплачиваемого за единицу времени, в которой измеряется срок ренты. Вычислим современную величину A, пользуясь правилами интегрирования определенного интеграла:
A = = + .
Обозначим A1 = , A2 = .
Имеем: A1 = = - Ro/dê= - Ro/d(-eo) = - Ro/d(-1) = = Ro(-1)/d. A2 = . Вычислим неопределенный интеграл по частям: u = t, dv = dt Þ du = dt, v = = - /d, тогда = - t/d + 1/d = - t/d (t+1/d) +C. Следовательно, A2 = -a t/d (t+1/d)ê= ((1- )/d - n)a/d.
Итак, исходный интеграл
A = A1 +A2 = Ro(-1)/d + ((1- )/d - n)a/d.
... метод потенциалов. Однако на распределительном методе основаны некоторые другие способы решения задач, что и вызывает необходимость его изучения. [5] 9. Метод потенциалов Решение транспортной задачи любым способом производится на макете. Макет для применения метода потенциалов имеет следующий вид. Основная часть макета выделена двойными линиями. Она содержит k×l клеток. Каждая ...
... признакам следует выделить два основных вида игр, несущих наибольшую образовательную нагрузку, так как все остальные являются производными от них. Этими видами являются инновационные игры и ансамблевые игры. Имитационные или ролевые игры позволяют обучать персонал практически с нуля, в то время как два предыдущих вида больше связаны с развивающим обучением. Назначение деловых игр Деловая ...
... из остальных факторов мало что удастся сделать. Когда я поступил в корпорацию "Крайслер", то взял с собой мои записные книжки из компании "Форд", в которых была отражена служебная карьера нескольких сот фордовских менеджеров. После увольнения я набросал подробный перечень того, что не хотел оставлять в кабинете. Эти записные книжки в черных переплетах, несомненно, принадлежали мне, но можно было ...
... . научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев. (38) Связь между разделами естествознания. Слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время ...
0 комментариев