9. Дифференциальные уравнения

При изучении интегралов перед нами стояла задача: найти y, если

y¢ = f(x),

или dy = f(x)dx. Решение, как известно, дается формулой

y = ò f(x)dx

и сводится, таким образом, к вычислению неопределенного интеграла. Однако на практике значительно чаще встречается гораздо более сложная задача: найти функцию y, если известно, что она удовлетворяет данному соотношению вида

F(x, y, y¢, y¢¢,..., y(n)) = 0. (9.1)

Такого рода соотношения, связывающие независимую переменную x, неизвестную функцию y и ее производные до некоторого порядка n включительно, называются дифференциальными уравнениями.

В дифференциальном уравнении, таким образом, неизвестной является функция, входящая в уравнение под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей производной, входящей в дифференциальное уравнение, называется порядком этого дифференциального уравнения.

Например:

y¢ - x2y + x3 = 0 - уравнение первого порядка,

y¢¢ + 4y¢ + cos x = 0 - уравнение второго порядка,

x y(5) + yy¢¢¢ = 1 - уравнение пятого порядка и т. д.

Всякая функция, удовлетворяющая данному дифференциальному уравнению, называется его решением, или интегралом. Решить дифференциальное уравнение - это значит найти все его решения. Если для искомой функции y нам удалось получить формулу, дающую все решения данного дифференциального уравнения и только их, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение дифференциального уравнения n-го порядка содержит n произвольных постоянных с1, с2,..., cn и имеет вид

y = j(x,с1, с2,..., cn).

Если соотношение, связывающее x, y и n произвольных постоянных, получено в виде, не разрешенном относительно y -

Ф(x, y, с1, с2,..., cn) = 0,

то будем называть такое соотношение общим интегралом уравнения (9.1).

В противовес общему решению каждое конкретное решение, т. е. каждая конкретная функция, удовлетворяющая данному дифференциальному уравнению и не зависящая от произвольных постоянных, называется частным решением, или частным интегралом. Частные решения (интегралы) получаются из общего, когда постоянным с1, с2,..., cn придают конкретные числовые значения.

График каждого частного решения называется интегральной кривой. Поэтому общее решение, содержащее все частные решения, представляет собой семейство интегральных кривых. В случае уравнения первого порядка это семейство зависит от одной произвольной постоянной, в случае уравнения n-го порядка - от n произвольных постоянных.

В задаче Коши (начальной задаче) требуется найти частное решение для уравнения n-го порядка, удовлетворяющее n начальным условиям:

y(xo) = yo, y¢(xo) = yo¢,..., y(n-1)(xo) = yo(n-1),

по которым определяются n постоянных с1, с2,..., cn. Дифференциальное уравнение 1-го порядка имеет общий вид

F(x, y, y¢) = 0,

или вид, разрешенный относительно y¢:

y¢ = f(x, y).

Пример 3.46. Найти общее решение уравнения y¢ = 3x.

Решение. Интегрируя, находим

y = ò 3x dx, y = 3x2/2 + C,

где С - произвольная постоянная. Придавая С конкретные числовые значения, будем получать частные решения, например,

y = 3x2/2 (С= 0),

y = 3x2/2 + 5 (С = 5)

и т.д.

Пример 3.47. Рассмотрим процесс возрастания денежной суммы, положенной в банк при условии начисления 100 r сложных процентов в год. Пусть Yo обозначает начальную денежную сумму, а Yx - денежную сумму по истечении x лет. Если бы проценты начислялись один раз в год, мы бы имели

Yx+1 = (1+r)Yx,

где x = 0, 1, 2, 3,.... Если бы проценты начислялись два раза в год (по истечении каждого полугодия), то мы имели бы

Yx+1/2 = (1 + r/2)Yx,

где x = 0, 1/2, 1, 3/2,.... Вообще, если проценты начисляются n раз в год и x принимает последовательно значения 0, 1/n, 2/n, 3/n,..., тогда

Yx+1/n = (1 + r/n)Yx,

то есть

.

Если обозначить 1/n = h, то предыдущее равенство перепишется так:

.

Неограниченно увеличивая n (при n®¥, h®0) мы в пределе приходим к процессу возрастания денежной суммы при непрерывном начислении процентов:

,

то есть при непрерывном изменении x закон возрастания выражен дифференциальным уравнением 1- го порядка. Отметим для четкости, что Yx - неизвестная функция, x - независимая переменная, r - постоянная. Для решения данного уравнения перепишем его следующим образом:

откуда Yx =e r x+C, или Yx = Pe r x, где через P обозначено eC.

Учитывая начальное условие Y(0) = Yo, найдем P: Yo = Peo, следовательно, Yo = P. Решение имеет вид:

Yx =Yo e r x.

Рассмотрим еще одну экономическую задачу. Простейшие макроэкономические модели также приводят к линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48. Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

,

и пусть, кроме того, дефицит в расходах правительства прямо пропорционален доходу Y (при коэффициенте пропорциональности q). Дефицит в расходах приводит к возрастанию национального долга D:

dD/dt = qY.

Здесь мы считаем переменные Y и D непрерывными и дифференцируемыми функциями времени t. Пусть начальные условия имеют вид Y = Yo и D = Do при t = 0. Из первого уравнения мы получаем, учитывая начальные условия, Y= Yo e k t. Подставляя Y во второе уравнение, получаем dD/dt = qYo e k t. Общее решение этого уравнения имеет вид D = (q/ k) Yo e k t +С, где С = const, которую мы определим из начальных условий. Подставляя начальные условия в полученное решение, мы получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do+(q/ k)Yo (e k t -1),

то есть, национальный долг возрастает с той же относительной скоростью k, что и национальный доход.

Простейшим дифференциальным уравнением n-го порядка является уравнение

y(n) = f(x).

Его общее решение можно получить с помощью n интегрирований.

Пример 3.49. Решить уравнение y¢¢¢ = cos x.

Решение. Интегрируя, находим

y¢¢ = ò cos x dx = sin x + C1,

y¢ = ò (sin x + C1)dx = - cos x + C1x + С2,

y = ò (- cos x + C1x +C2)dx = - sin x + C1x2/2 +C2x+C3.

Итак, общее решение

y = - sin x + C1x2/2 +C2x+C3.

В математической экономике большое применение находят линейные дифференциальные уравнения, и поэтому мы рассмотрим решение таких уравнений. Дифференциальное уравнение (9.1) называется линейным, если имеет вид:

рo(x)y(n)(x) + р1(x)y(n- 1)(x) +... + рn - 1(x)y¢(x) + рn(x)y(x) = f(x), (9.2)

где рo(x), р1(x),..., рn(x), f(x) - данные функции. Если f(x) º 0, то уравнение (9.2) называется однородным, в противном случае - неоднородным. Общее решение уравнения (9.2) есть сумма какого-либо его частного решения y(x) и общего решения соответствующего однородного уравнения:


рo(x)y(n)(x) + р1(x)y(n- 1)(x) +... + рn - 1(x)y¢(x) + рn(x)y(x) = 0. (9.3)

Если коэффициенты рo(x), р1(x),..., рn(x) постоянные, то уравнение (9.2) принимает вид:

рoy(n)(x) + р1y(n- 1)(x) +... + рn - 1y¢(x) + рny(x) = f(x)  (9.4)

и называется линейным дифференциальным уравнением порядка n с постоянными коэффициентами.

Соответствующее уравнению (9.4) однородное уравнение выглядит так:

рoy(n)(x) + р1y(n- 1)(x) +... + рn - 1y¢(x) + рny(x) = 0. (9.5)

Без ограничения общности можно положить рo = 1 и записать уравнение (9.5) в виде

y(n)(x) + р1y(n- 1)(x) +... + рn - 1y¢(x) + рny(x) = 0.  (9.6)

Решение уравнения (9.6) будем искать в виде y = e kx, где k - постоянная. Имеем: y¢ = ke kx, y¢¢ = k2 e kx,..., y(n) = kn e kx. Подставляя полученные выражения в (9.6), будем иметь:

 

e kx (kn + р1kn-1 +... + рn-1k + рn) = 0.

Т.к. e kx ¹ 0, то

kn + р1kn-1 +... + рn-1k + рn = 0. (9.7)

Равенство (9.7) есть алгебраическое уравнение с неизвестным k. Оно называется характеристическим уравнением для дифференциального уравнения (9.6). Характеристическое уравнение есть уравнение n-й степени, следовательно, оно имеет n корней, среди которых могут быть кратные и комплексные. Если k1, k2,..., kn - действительные и различные корни уравнения (9.7), то - частные решения уравнения (9.7), а общее имеет вид

y = .

Рассмотрим подробно линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

y¢¢ + рy¢ +qy = 0. (9.8)

Его характеристическое уравнение имеет вид

k2 + рk + q=0 (9.9)

и в зависимости от значения дискриминанта D = р2 - 4q возможны три случая.

1. Если D>0, то корни k1 и k2 уравнения (9.9) действительны и различны, тогда общее решение имеет вид:

y = c1 exр(k1x) + c2 exр(k2x).

2. Если D = 0, т.е. корни k1и k2 действительные и равные, то общее решение находится по формуле:

y = (c1 + c2x) exр (k1x).

3. Если D<0, то корни комплексные, k1 = a + bi, k2 = a - bi, где i - мнимая единица. Тогда общее решение таково:

y = (c1 cos bx+c2 sin bx) exр (ax).

Пример 3.50. Решить уравнение y¢¢ - y = 0.

Решение. Характеристическое уравнение имеет вид k2 - 1 = 0, корни которого k1 = 1, k2 = -1 действительны и различны. Общее решение:

y = c1ex + c2e -x.

Пример 3.51. Найти общее решение уравнения y¢¢- 4y¢ + 4y = 0.

Решение. Характеристическое уравнение запишется в виде: k2 -4k +4 = 0 или (k - 2)2 = 0, т.е. имеет равные корни k1= k2 =2, значит, общее решение данного уравнения находится по формуле:

y = e2x(c1+c2x).

Пример 3.52. Найти общее решение уравнения y¢¢+9y = 0.

Решение. Имеем следующее уравнение для нахождения k: k2+9 = 0, откуда k = ±3i, Þ a = 0, b = 3, значит, общее решение имеет вид:

y = c1 cos 3x + c2 sin 3x.

Линейные дифференциальные уравнения 2-го порядка находят применение при изучении, например, экономической модели паутинообразного типа с запасами товаров, в которой скорость изменения цены P зависит от величины запаса (см. о паутинообразной модели в параграфе 10). Если спрос и предложение являются линейными функциями цены, то есть

D = a +aP, S =b+bP,

а l есть постоянная, определяющая скорость реакции (то есть изменения цены при изменении запасов товара), то процесс изменения цены описывается дифференциальным уравнением:

+ l (b - a) P = l (a - b).

В качестве частного решения можно взять постоянную

P =`P = (a - b)/(b - a),

имеющую смысл цены равновесия. Отклонение р = P -`P удовлетворяет тогда однородному уравнению

+ l (b - a) р = 0.  (9.10)

Найдем общее решение этого уравнения. Характеристическое уравнение, в котором неизвестная обозначена через k, будет следующее:

k2 + l (b - a) = 0.

В обычном случае (a<0, b>0, l>0) член l (b - a) положителен. Введем обозначение w =. Тогда корни характеристического уравнения будут k 1,2 = ± i w. Следовательно, общее решение уравнения (9.10) имеет вид:

р = C cos (wt-e),

где C и e представляют собой произвольные постоянные, которые определяются единственным образом, если заданы начальные условия. Следовательно, присоединив `P, получим закон изменения цены во времени:

P = `P+ C cos (wt-e).

 


Информация о работе «Высшая математика для менеджеров»
Раздел: Математика
Количество знаков с пробелами: 149274
Количество таблиц: 13
Количество изображений: 5

Похожие работы

Скачать
43574
0
9

... метод потенциалов. Однако на распределительном методе основаны некоторые другие способы решения задач, что и вызывает необходимость его изучения. [5] 9. Метод потенциалов Решение транспортной задачи любым способом производится на макете. Макет для применения метода потенциалов имеет следующий вид. Основная часть макета выделена двойными линиями. Она содержит k×l клеток. Каждая ...

Скачать
132492
10
0

... признакам следует выделить два основных вида игр, несущих наибольшую образовательную нагрузку, так как все остальные являются производными от них. Этими видами являются инновационные игры и ансамблевые игры. Имитационные или ролевые игры позволяют обучать персонал практически с нуля, в то время как два предыдущих вида больше связаны с развивающим обучением. Назначение деловых игр   Деловая ...

Скачать
886960
0
0

... из остальных факторов мало что удастся сделать. Когда я поступил в корпорацию "Крайслер", то взял с собой мои записные книжки из компании "Форд", в которых была отражена служебная карьера нескольких сот фордовских менеджеров. После увольнения я набросал подробный перечень того, что не хотел оставлять в кабинете. Эти записные книжки в черных переплетах, несомненно, принадлежали мне, но можно было ...

Скачать
193189
0
0

... . научн. картине мира, кот. дает естествознание. Необходимость применения естствено научных методов и законов в практической деят-ти гуманитарных специальностей и привело к постановке того курса, кот. мы будем изучать: Физика для гуманитариев. (38)    Связь между разделами естествознания. Слово естествознание представляет из себя сочетание 2х слов: естество (природа) и знание. В настоящее время ...

0 комментариев


Наверх