7. Психологическая комфортность. Система задач учитывает наличие разных темпераментов, типов мышления, видов памяти.
Система задач - основной ресурс учителя для реализации эффективного образовательного процесса. От качества этого ресурса более чем наполовину зависит успех учащихся при изучении курса. Остальные составляющие успеха заключены в организации их деятельности и управлении этой деятельностью [19, 39].
1.6 Этапы решения задач
Психологами обнаружена закономерность в поведении человека при решении задач. Он разбивает задачу на некоторые число более простых, т.е. ставит пред собой промежуточные вопросы (анализ задачи). Затем приступает к очередной проверке ряда простых задач, накапливая количественную информацию. Решив их, переходит к решению сложной – синтезирует. Таким образом, задачи решаются путем анализа и синтеза в совокупности. Иногда анализ протекает в скрытом виде (решающий провел анализ быстро, по шаблону), в таком случае создается впечатление, что имеет место только синтез. Поэтому цель учителя – не только подобрать задачи к уроку, но и обдумать, как он будет обучать учащихся разбивать подобранные задачи на более простые.
Решение задачи состоит из многих операций, которые связаны между собой и применяются в некоторой логической последовательности. Выявление этих связей и определение последовательности логических и математических операций лежат в основе умения решать задачи.
Решение предполагает поисковую деятельность, включение в этот процесс интеллектуальных операций. С точки зрения дидактики важно иметь в виду и то обстоятельство, что при решении любой задачи (математической, физической, химической и др.) задаются цель, условия и требования к учебно-познавательной деятельности. Естественно предположить существование закономерностей для процесса овладения общей процедурой деятельности. Отсюда вытекает необходимость использования общей методологии решения задач, т.е. объективном процессе интеграции естественнонаучных и математических знаний и умений, неизбежности связи предметных языков. Таким образом, главная дидактическая цель учителя химии при обучении решению расчетных задач: формирование общих логических основ стехиометрических знаний и общепредметных умений на базе общенаучных методов.
В общем виде способ решения химических задач можно представить следующим порядком действий:
1) краткая запись условия задачи (вначале указывают буквенные обозначения заданных величин и их значения, а затем — искомые величины), которые при необходимости приводятся в единую систему единиц (количественны сторона);
2) выявление химической сущности задачи, составление уравнений всех химических процессов и явлений, о которых идет речь в условии задачи (качественная сторона);
3) соотношения между качественными и количественными данными задачи, т.е. установление связей между приводимыми в задаче величинами с помощью алгебраических уравнений (формул) – законов химии и физики;
4) математические расчеты [15, 57].
1.7 Классификация химических задач
В ходе составления условий простейших задач и их решения необходимо научиться классифицировать задачи, понимать взаимосвязь между различными величинами, характеризующими условие задачи, т. е., прежде чем приступить к решению задачи, необходимо проанализировать ее условие.
На сегодняшний день не существует окончательной едино разработанной классификации химических задач. В учебных пособиях по методике химии, специальных методических пособиях по решению задач и в статьях приводятся различные классификации задач. Общепризнанной является классификация задач на количественные и качественные, которые решаются устным письменным и экспериментальным способом. В свою очередь эти задачи бывают репродуктивными и продуктивными. Репродуктивные задачи – это типовые задачи, при решении которых возможно применение алгоритмов. В этом случае учитель сам объясняет ход их решения. Продуктивные – творческие задачи, в них необходимо самостоятельно найти способы решения. Для этого не достаточно организованного опыта, необходимо качественно иной опыт, заключающийся в умении логически мыслить, анализировать ситуацию в способности к интуитивному решению проблемы как высшего проявления логического мышления [20, 57].
Различаются задачи и упражнения по дидактическим целям. Задачи имеют целью развитие у учащихся умения применять знания химии в различных условиях практики. Упражнения имеют в качестве основных целей формирование навыков, но отдельным операциям, умственным или физическим. Следовательно, знание различия понятий «упражнения» и «задачи» имеет не только теоретическое, но и практическое значение, так как позволяет целесообразно применять упражнения или задачи обучении.
2. Выявление трудностей при решении задач по теоретическим основам химической технологии в рамках изучения курса Прикладная химия
Задачи по химической технологии, составленные и подобранные в настоящей работе, были использованы для проведения контрольной работы по прикладной химии. В апробации участвовали студенты 5 курса специальностей «Химия» с доп. спец. «Биология» и «Биология» с доп. спец. «Химия» (всего 39 студентов). Контрольная работа проводилась на итоговом занятии по прикладной химии. Каждая задача оценивалась по 5-балльной системе в соответствии с тем, насколько полно представлено решение. Оценка за контрольную работу в целом также выставлялась по 5-балльной системе, принятой в ВУЗах.
Практически все студенты справились с задачами (92,3%), в том числе 61,8% на «хорошо» и «отлично» (рис. 1). И действительно, большинство студентов не испытывали трудностей в решении задач. Наиболее успешно были решены задачи по химической технологии с производственным содержанием (металлургия – полностью решили 66,7% студентов, производство органических соединений – 61,5%, рис. 2). Некоторые затруднения вызвало решение задач на темы химическая кинетика и химическое равновесие (полностью эти задачи решили около 40% студентов), возможно, из-за сложного математического аппарата этих задач, где требуется знание основ интегрирования, дифференцирования, возведения в степень и т.д.
Мы проанализировали решение каждого типа задач. Многие студенты не получили высокие баллы за контрольную работу из-за того, что не получили правильные итоговые ответы. Действительно, достаточно большая часть ребят решила задачи «не полностью» (рис. 3, 4). Как правило, такие студенты приводили верные формулы для расчетов, но затруднялись в подстановке численных значений.
Конкретные, наиболее часто встречающиеся ошибки в решении задач представлены в табл. 1.
Таблица 1.Тема | Результаты контрольной работы, % | Замечания | ||
Решили полностью | Не решили | Решили не полностью или с ошибками | ||
Термохимия | 46,2% | 12,8% | 41% | Ошибки связаны в основном с уравнениями химических реакций, студенты забывают расставить коэффициенты, а также ошибки связанные со следствиями из закона Гесса. |
Химическое равновесие | 41% | 15,4% | 43,6% | Ошибки связаны с нахождением константы равновесия: студенты «переворачивают» формулу для нахождения Кс, а также коэффициенты перед веществами ставят как множители, а не как степень. Не помнят о знаке «-» в уравнении Вант-Гоффа (зависимость константы равновесия от температуры). Также наблюдаются затруднения при нахождении равновесных концентраций, если известна константа равновесия (с использование перемен. х) |
Химическая кинетика | 38,5% | 20,5% | 41% | Ошибки связаны с определением порядка реакций. Многие студенты забывали о присутствии экспоненты и предэкспоненциального множителя в уравнении Аррениуса. |
Технико-экономические показатели производств | 59% | 10,3% | 30,7% | Ошибки связаны с неправильным нахождением выхода продукта и с незнанием формул для расчета степени превращения исходных реагентов и селективности. |
Задачи с экологическим содержанием | 51,3% | 8% | 30,7% | Ошибки связаны с непони-манием сущности задачи, а также ошибки связанные с неправильным переводом м3 в литры, и с неправиль-ным использованием значения массы вещества вместо объема раствора в формуле |
Металлургия | 66,7% | 7,7% | 25,6% | Ошибки связаны с непра- вильным нахождением mпр и mтеор. В формуле , например, при нахождении mпр, вместо формулы пишут , т.е студенты путают значение массы пустой породы с массой чистого вещества. |
Электрохимические производства | 56,7% | 12,8% | 30,2% | Ошибки связаны с непра- вильным нахождением эквивалента элемента, с неправильным переводом часов в секунды (система СИ). |
Производство органических соединений | 61,5% | 7,7% | 30,8% | Ошибки связаны с непра- вильным нахождением молекулярной массы вещества, с неправильным определением брутто – формулы вещества |
Общие ошибки:
... принципа приближения и термодинамической обратимости к экстрактивной ректификации, с одной стороны, и выявить области оптимальности схем экстрактивной ректификации, с другой стороны. Постановка задачи Целью данной работы является разработка технологии разделения азеотропной смеси циклогексан – бензол – этилбензол методом экстрактивной ректификации, обладающей минимальными энергозатратами. Для ...
... , таблица). Метод моделирования позволяет активизировать познавательную деятельность учащихся на уроке. 2.2. Опытно – экспериментальная работа. Анализ ее результатов Изучив теоретические положения по использованию моделирования при решении задач в 5 классе, у автора возникло желание и интерес реализовать это на практике. Для того чтобы доказать или опровергнуть предположение, что ...
... и дидактические основы организации обучения позволяют более доступно объяснять изучаемый материал на уроках физики при изучении темы «Основы электродинамики». Анализ различных технологий позволил составить авторскую технологию развития у учащихся направленности на диалогическое общение при групповой форме обучения. От того, на сколько правильно будет построен процесс обучения при использовании ...
... групп – в виде краткого отчета о проделанной работе (демонстрация рисунков, таблиц). Далее идет обсуждение выступлений; учитель продумывает со своими коллегами трудовое задание [1]. 1.1 Межпредметные связи при решении расчетных задач К изучению математики учащиеся средней школы приступают на 7 лет раньше, чем к изучению химии. За этот период обучения они приобретают значительный объем ...
0 комментариев