3.1.4 Евклідові кільця, їх факторіальність

Порівняно з кільцями головних ідеалів більш близькими до кільця цілих чисел за своїми властивостями є кільця, в яких справедлива теорема, що є аналогом теореми про ділення з остачею в кільці цілих чисел. Ці кільця називають евклідовими. Вони означаються так:

Означення. Область цілісності R з одиницею називається евклідовим кільцем, якщо існує відображення φ множини відмінних від 0 елементів цієї області цілісності в множину цілих невід'ємних чисел N0, тобто φ:R\{0}→N0, яке задовольняє таку вимогу: для будь-яких елементів a, bÎR, b¹0 в R існують такі елементи q і r, що а =bq+r, причому або r= 0, або φ(r)<φ(b).

Кільце цілих чисел Z – евклідове; відображення φ, про яке йде мова в означенні, задається так:

Евклідовим також є кільце многочленів від невідомого х з коефіцієнтами з поля Р.

Теорема 9. Кожне евклідове кільце R є кільцем головних ідеалів.

Доведення.

Нехай U – довільний ідеал евклідового кільця R. Якщо U – нульовий ідеал, то U= (0). Припустимо, що ідеал U – відмінний від нульового. Тоді в U є елементи, відмінні від нуля. Серед відмінних від нуля елементів ідеалу U, очевидно, є такий елемент a0, що φ(a0)φ(a) для будь-якого ненульового елемента аÎU. За означенням евклідового кільця, для будь-якого елемента аÎU в кільці R існують такі елементи q і r, що a=a0q+r, причому, якщо r¹ 0, то φ(r)<φ(a0). Але оскільки r=a-a0qÎU, то можливість r¹0 виключається і тому r=0. Таким чином, a=a0q і, отже, U є головний ідеал, породжений елементом а0.

Доведено.

Наслідок Будь–яке евклідове кільце факторіальне.

Наслідок Кільце Z цілих чисел є кільцем головних ідеалів і, значить, факторіальне.

Оскільки кожне евклідове кільце є кільцем головних ідеалів, то для елементів будь-якого евклідового кільця справедливі теореми 7 і 8. Зауважимо, що твердження, обернене твердженню 9, неправильне: існують кільця головних ідеалів, які не є евклідовими.

Нам уже відомо про існування найбільшого спільного дільника для будь-яких двох елементів а і b кільця головних ідеалів R. А тепер поговоримо про те, як же відшукати цей найбільший спільний дільник. Методу, який би давав змогу відшукати найбільший спільний дільник будь-яких двох елементів а і b довільного кільця головних ідеалів R, не існує. В евклідових же кільцях його можна відшукати за допомогою алгоритму Евкліда. Справді, нехай a0 і a1 будь-які відмінні від нуля елементи евклідового кільця R і нехай φ(а0) ³ φ(а1). Тоді, за означенням евклідового кільця, в R існують такі елементи q1, a2, що а0 = а1q12, причому або а2 = 0, або φ(а1) > φ(а2). Якщо а2¹ 0, то в R існують такі елементи q2 і a3, що a1 = a2q2 +a3 причому або а3 = 0 або φ(а2)>φ(а3). Якщо а3 ¹ 0, то в R існують такі елементи q3 i a4, що а23q3+a4 і т.д.

Оскільки φ(а1) > φ(а2) > φ(а3) >… > φ(аs-1) >φ(аs)>…, то цей процес послідовного ділення не може продовжуватись нескінченно: в противному разі множина цілих невід'ємних чисел φ(а1) > φ(а2)>… > φ(аs) >… не мала б найменшого числа. Отже, через кілька кроків ми дійдемо до ділення з остачею нуль: am-1= аmqm. Таким чином, ми матимемо рівності

а0 = а1q12,

a1 = a2q2 +a3,

а23q3+a4,

……………

am-3=am-2qm-2+am-1,

am-2=am-1qm-1+am,

am-1=amqm+1.

Остання рівність означає, що аm дільником am-1. Оскільки кожен з доданків правої частини передостанньої рівності ділиться на аm, то і її ліва частина ділиться на аm, тобто аm є дільником am-2. Аналогічними міркуваннями ми доведемо, що аm є дільником am-3, am-4,…, a4, а3, a2, a1, а0. Отже, аm є спільним дільником елементів ао і а1. Покажемо тепер, що аm ділиться на будь-який спільний дільник елементів ао і а1. Нехай b – довільно вибраний спільний дільник aо і a1. Тоді з рівності ао = a1q1+q2 випливає, що a2 ділиться на b, з рівності а1 = a2q2 + а3 випливає, що а3 ділиться на b і т.д. Нарешті, з рівності ат–2 = aт–1qт–1 + am випливає, що am ділиться на b. Таким чином, елемент аm є спільним дільником елементів a0 і a1 і ділиться на будь-який спільний дільник цих елементів, тобто аm є найбільшим спільним дільником елементів a0 i a1.

 

Задачі

№1

Довести, що в 5кільці Z[] простими є такі елементи

а) 2;

б) –2;

в) 1+і;

г) 1–і;

Доведення

Знайдемо спочатку дільники одиниці в Z[].

Нехай a+b, c+d – дільники одиниці, a, b, c, d ÎZ. Тоді

(a+b) (c+d)=1.

Знайдемо норму обох частин цієї рівності:

Nr (a+b)=(a2+3b2).

Маємо

(a2+3b2) (c2+3d2)=1. (1)

Рівність (1) виконується, якщо

a2+3b2=c2+3d2=1. (2)

Рівність (2), в свою чергу, виконується при a=±1, b=0, c=±1, d=0. Отже, в кільці Z[] лише 2 дільники одиниці: 1, –1.

а) Зрозуміло, що 2¹0 і не є дільником одиниці в кільці Z[]. Використаємо норму і покажемо, що 2 – простий елемент в кільці Z[]. Оскільки Nr(2)=4, то, припустивши, що 2 є складене число, дістаємо

2=(a+b) (c+d), (3)

де a+b, c+d не є дільниками одиниці і не є асоційованими з числом 2, a, b, c, d Î Z[].

З рівності (3) маємо

4=(a2+3b2) (c2+3d2) (4)

Для a, b, c, d Î Z ця рівність можлива тоді і тільки тоді, коли

a2+3b2=1, c2+3d2=4 (a)

або a2+3b2=4, c2+3d2=1 (b)

або a2+3b2=2, c2+3d2=2 (g)

В (a) і (b) дістаємо, що або a2+3b2 або c2+3d2 відповідно є дільником одиниці, що суперечить припущенню

Розглянемо (g) a2+3b2=2, a2=2, а= ÏZ.

Отже, цей випадок теж не можливий, бо a, b, c, d повинні належати Z.

Отже, 2 не може бути складеним числом. Оскільки 2¹0 і не є дільником одиниці, то 2 – просте число в кільці Z[].

б) Так як ми довели, що 2 – простий елемент кільця Z[], то можна стверджувати, що –2 теж просте, бо –2 є асоційованим з числом 2.

в) Очевидно, що 1+¹0 і не є дільником одиниці в кільці Z[]. Використаємо норму і покажемо, що 1+ є простим елементом.

Оскільки Nr (1+)=2, то, припустивши, що 1+ є складеним дістаємо

1+=(a+b) (c+d),

де a+b, c+d не є дільником одиниці і не є асоційованим з числом 1+, a, b, c, d ÎZ.

З цієї рівності маємо

(a2+3b2) (c2+3d2)=2.

Для цілих чисел a, b, c, d ця рівність можлива лише, коли

a2+3b2=2, c2+3d2=1 або a2+3b2=1, c2+3d2=2

При цьому маємо, що або a2+3b2 або c2+3d2 відповідно є дільником одиниці, що суперечить припущенню. Отже, 1+ – простий елемент в кільці Z[].

г) Розглянемо число 1–. Знайдемо його норму

Nr (1–)=2

Так як Nr (1–)=Nr (1+)=2 і 1+ – просте число, то і 1– – теж просте.

Доведено.

 


Информация о работе «Факторіальні кільця та їх застосування»
Раздел: Математика
Количество знаков с пробелами: 55242
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
218154
19
0

... час; організація взаємодії і всебічного забезпечення дій; готовність засобів управління підрозділами. Командири підрозділів військ РХБ захисту зобов’язані своєчасно доповідати старшому командиру про отримане завдання, прийнятому рішенні, результатів застосування противником ЗМУ, виконанні завдання, нових відомостях про противника, радіаційній, хімічній та біологічній (бактеріологічній) обстановц ...

Скачать
60239
0
1

... чим вихідний полімерний матеріал) створюють дратівну дію, їхня присутність у зоні імплантації буде підтримувати вогнище хронічного асептичного запалення. Говорячи про вимоги, висунуті до полімерів медичного призначення, звичайно згадують і необхідність відсутності в них канцерогенної, мутагенної й іншої токсичної дій, хоча зараз ще не ясно, які саме властивості синтетичних полімерів визначають ці ...

Скачать
50224
3
7

... спектру дії  Наявність загального родоспецифічного антигена. Все це визначає самостійне положення цих мікроорганізмів серед прокаріот [5].   3. Характеристика будови та морфології представників роду Chlamydia   3.1 Морфологічні особливості Хламідії є групою прокаріотних мікроорганізмів і мають вид дрібних грамнегативних коків. Добре видні в не зафарбованому стані при мікроскопії ...

Скачать
810571
0
0

... заходів і здійснюється на засадах гласності і суворого додержання вимог законодавства, охорони прав громадян, підприємств та організацій[58][247]. Нарешті зазначимо, що значення адміністративного примусу в правоохоронній діяльності міліції в концентрованому вигляді виявляється в його призначенні та меті. Цей примус слід розглядати як один з найважливіших засобів здійснення державної влади, що ...

0 комментариев


Наверх