3.3 Определение периода функции
Пример 1.
Является ли периодической функция ?
Решение
Воспользуемся следующим утверждением: если дифференцируемая в каждой точке числовой прямой функция имеет период Т, то ее производная также имеет период Т.
Предположим, что данная функция является периодической с периодом Т. Применяя формулу
,
получаем
где .
Имеем
Поскольку по предположению функция имеет период Т, то функция , а следовательно, и функция также имеют период Т.
Значит, и функция
Также имеет период Т. Отсюда следует, что существует число , , такое, что Т=. Аналогично показывается, что существует число , такое, что Т=.
Но тогда
т.е. число является рациональным, что неверно. Следовательно данная функция НЕ является периодической.
3.4 Нахождение приближенных значений функции
Пример 1.
Найти приращение и дифференциал функции в точке х=2 при и при . Найдите абсолютную и относительные погрешности, которые мы допускаем при замене приращения функции ее дифференциалом.
Решение
При х=2 и имеем
Абсолютная погрешность
Относительная погрешность то есть относительная погрешность будет около 4%.
При х=2 и имеем
Абсолютная погрешность а относительная погрешность то есть относительная погрешность будет уже около 0,4%.
Пример 2
Пользуясь понятием дифференциала функции вычислите приближенно изменение, претерпеваемое функцией при изменении х от значения 5 к значению 5,01.
Решение.
В данном случае будем считать х=5, а . Изменение функции
3.5 Нахождение величины угла между прямыми и кривыми.
Углом между графиками функций и в точке их пересечения называется угол между касательными к их графикам в этой точке (рис.).
Пример 1.
Найти угол между графиками функций и
в точке их пересечения (с положительной абсциссой).
Решение.
Абсциссы точек пересечения данных графиков удовлетворяют уравнению
И тем самым следующей системе:
Отсюда находим, что графики функций пересекаются в двух точках, абсциссы которых равны 0 и 2. Найдем тангенсы углов наклона касательных к обоим графикам функций в точке с абсциссой, равной 2. Имеем
Отсюда и Так как , то уравнения касательных к графикам функций и в точке (2;2) соответственно имеют вид
и
т.е.
и
Следовательно величина угла между касательными удовлетворяют уравнению
и тем самым графики функций и в точке с абсциссой х=2 пересекаются под углом, равным
... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариационной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...
... и менеджмента Санкт-Петербургского Государственного технического университета соответствовал поставленной цели. Его результаты позволили автору разработать оптимальную методику преподавания темы: «Использование электронных таблиц для финансовых и других расчетов». Выполненная Соловьевым Е.А. дипломная работа, в частности разработанная теоретическая часть и план-конспект урока представляет ...
... кадастра памятников России и привязки его к ГИС «Компас-2», я изучил возможности, функции ГИС «Компас-2», а также возможность использования его для создания различных видов природных кадастров. Компас-2 – это сетевая система для представления, моделирования и анализа географической информации Функциональные возможности системы КОМПАС 2: публикация географической информации (ГИ) в сетях ...
... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...
0 комментариев