3.6 Разложение на множители и упрощение выражений.

Пример 1.

Разложить на множители выражение

.

Решение:

Считая х переменной величиной, рассмотрим функцию . Имеем .

Так как ,

то отсюда заключаем, что

.

Получаем , где С не зависит от х, но зависит от y и z.

Так как последнее равенство верно при любом х, то, полагая, например, в нем х=0 и учитывая, что , найдем .

Таким образом,

Итак, =.


Пример 2.

Упростить выражение

Решение

Считая х переменной величиной, рассмотрим функцию

Тогда, дифференцируя ее, имеем

.

Отсюда находим, что , где С не зависит от х, но может зависеть

от y и z. Полагая, например, х=0, получаем

.

Поскольку , то С=0.

Следовательно, .

3.7 Вычисление суммы

Пример 1.

Найти сумму


Решение:

Пусть .

Так как

,

, то

.

Поскольку есть сумма первых  членов геометрической прогрессии со знаменателем х, , то

.

Так как , то

3.8 Сравнение чисел и доказательство неравенств

При доказательстве неравенств или для сравнения двух чисел полезно перейти к общему функциональному неравенству.

Пример 1.

Сравнить  и .

Решение.

Рассмотрим функцию .

Так как

,

,

То функция  возрастает на интервале .

Таким образом,

И, следовательно, <.

Пример 2.

Какое из чисел больше:  или ?

Решение.

Рассмотрим функцию  Так как  и  при  то функция  возрастает на множестве всех действительных чисел. Поэтому , т.е.

Пример 3.

Докажите, что  при .

Доказательство:

Рассмотрим функцию  при  и .

При , .

Находим  и :; ;

;

. В точке  =6, то есть  имеет минимум, равный . При  функция  убывает от  до , а при  , то есть функция возрастает. При  , что и доказывает неравенство.


Информация о работе «Производная и ее применение для решения прикладных задач»
Раздел: Математика
Количество знаков с пробелами: 27370
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
57698
75
8

... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...

Скачать
216371
14
6

... и менеджмента Санкт-Петербургского Государственного технического университета соответствовал поставленной цели. Его результаты позволили автору разработать оптимальную методику преподавания темы: «Использование электронных таблиц для финансовых и других расчетов». Выполненная Соловьевым Е.А. дипломная работа, в частности разработанная теоретическая часть и план-конспект урока представляет ...

Скачать
162762
2
2

... кадастра памятников России и привязки его к ГИС «Компас-2», я изучил возможности, функции ГИС «Компас-2», а также возможность использования его для создания различных видов природных кадастров. Компас-2 – это сетевая система для представления, моделирования и анализа географической информации Функциональные возможности системы КОМПАС 2: публикация географической информации (ГИ) в сетях ...

Скачать
30417
0
16

... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...

0 комментариев


Наверх