3.14 Вычисление пределов функции с помощью правила Лопиталя

Раскрытие неопределенностей типа  и . Пусть однозначные функции  и  дифференцируемы при  причем производная  не обращается в нуль.

Если  и - обе бесконечно малые или бесконечно большие при т.е. если частное  представляет в точке х= неопределенность типа  или , то  при условии, что предел отношения производных существует (правило Лопиталя). Правило применимо и в случае, когда .

Если частное  вновь дает неопределенность в точке х= одного из двух упомянутых типов и  и  удовлетворяют всем требованиям, ранее сформулированным для  и , то можно перейти к отношению вторых производных и т.д.


Пример 1.

Пример 2.

Вычислить  (неопределенность типа

Приведя дроби к общему знаменателю, получим:

(неопределенность типа

Прежде чем применить правило Лопиталя, заменим знаменатель последней дроби эквивалентной ему бесконечно малой

Получим:

 (неопределенность типа

По правилу Лопиталя

Далее, элементарным путем находим:

3.15 Решение физических задач, связанных с нахождением скорости, ускорения и т.д.

Пример 1.

Дано уравнение прямолинейного движения тела: , где S- путь, пройденный телом, м; t- время, с. Найдите скорость тела в момент времени t=1 c.

Решение.

Скорость это производная пути по времени. Значит:

Подставив значение времени получим:

Пример 2.

Точка движется по закону . Найти скорость и ускорение через 2 с после начала движения (движение считать прямолинейным).

Решение.

Скорость это производная пути по времени. Значит: .

Подставив значение времени получим

Пример 3.

Тело движется прямолинейно по закону  Найти его кинетическую энергию через 5 с после начала движения, если масса тела 3 кг.

Решение.

Формула нахождения кинетической энергии: .

Найдем скорость тела. , .

Кинетическая энергия тела составит: .


Информация о работе «Производная и ее применение для решения прикладных задач»
Раздел: Математика
Количество знаков с пробелами: 27370
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
57698
75
8

... ^у^е^о ^ с^-^. Итак решение по Ритцу: ^-i-^ Сравнительная таблица имеет вид: Л. 0 0,5 1 1,5 2 у^ 0 -0,275 -0,3571 -0,2758 0 ^г) о -0,2126 -0,3520 -0,3258 0 50 3.6. Об одном подходе к решению нелинейных вариационных задач В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде: r-^^f^-^^ При этом граничные условия и{а ) = ...

Скачать
216371
14
6

... и менеджмента Санкт-Петербургского Государственного технического университета соответствовал поставленной цели. Его результаты позволили автору разработать оптимальную методику преподавания темы: «Использование электронных таблиц для финансовых и других расчетов». Выполненная Соловьевым Е.А. дипломная работа, в частности разработанная теоретическая часть и план-конспект урока представляет ...

Скачать
162762
2
2

... кадастра памятников России и привязки его к ГИС «Компас-2», я изучил возможности, функции ГИС «Компас-2», а также возможность использования его для создания различных видов природных кадастров. Компас-2 – это сетевая система для представления, моделирования и анализа географической информации Функциональные возможности системы КОМПАС 2: публикация географической информации (ГИ) в сетях ...

Скачать
30417
0
16

... задачи динамики, определять, при каких условиях осуществимо движение с заданными свойствами. С другой стороны, и само развитие теории управления движениями материальных систем вызвало необходимость решения обратных задач динамики в различных постановках. Все это привело к тому, что обратные задачи классической механики оказались своего рода направляющими и исходными задачами современной науки об ...

0 комментариев


Наверх