2.4 Використання парності функції
Функція f (x) називається парної, якщо для кожного виконуються рівності:
1) ,
2) f (–x) = f (x).
Графік парної функції на всій області визначення симетричний щодо осі OY. Прикладами парних функцій можуть служити y = cos x, y = |x|, y = x2 + |x|
Графік парної функції
Функція f (x) називається непарної, якщо для кожного виконуються рівності:
1) ,
2) f (–x) = –f (x).
Іншими словами функція називається непарної, якщо її графік на всій області визначення симетричні відносно початку координат. Прикладами непарних функцій є y = sin x, y = x3.
Графік непарної функції
Не слід думати, що будь-яка функція є або парної, або непарної. Так, функція не є ні парної, ні непарної, тому що її область визначення несиметрична відносно початку координат. Область визначення функції y = x3 + 1 охоплює всю числову вісь і тому симетрично відносно початку координат, однак f (–1) ≠ f (1). А це значить, що функція не є ні парної, ні непарної, тобто є функцією загального виду (ФЗВ).
Якщо область визначення функції симетрична відносно початки координат, то цю функцію можна представити у вигляді суми парної й непарної функцій.
Такою сумою є функція
Перший доданок є парною функцією, друге - непарної.
Порівняльна ілюстрація функцій різної парності зображена на малюнку 6
|
Малюнок 6
Дослідження функцій на парність полегшується наступними твердженнями.
Сума парних (непарних) функцій є парною (непарної) функцією.
Добуток двох парних або двох непарних функцій є парною функцією.
Добуток парної й непарної функції є непарною функцією.
Якщо функція f парна (непарна), то й функція 1/f парна (непарна).
Приклад 2.4.1 чи Може при якому-небудь значенні а рівняння
2x8 – 3аx6 + 4x4 – аx2 = 5
мати 5 корінь?
Рішення. Позначимо f(x) = 2х8 – 3ах6 + 4х4 – ах2. f(x) – функція парна, тому, якщо x0 – корінь даного рівняння, те -x0 – теж. x = 0 не є коренем даного рівняння (0 ? 5). Отже, число корінь у цього рівняння при будь-якому дійсному а парне, тому 5 корінь воно мати не може.
Відповідь: не може.
2.5 Використання ОПЗ функції
Область визначення функції - це множина всіх припустимих дійсних значень аргументу x (змінної x), при яких функція визначена. Область визначення іноді ще називають областю припустимих значень функції (ОПЗ). Для знаходження ОПЗ функції потрібно проаналізувати дану відповідність і встановити заборонні операції, що зустрічаються (ділення на нуль, піднесення в раціональний ступінь негативного числа, логарифмічні операції над негативними числами й т.п.).
Іноді знання ОПЗ дозволяє довести, що рівняння (або нерівність) не має рішень, а іноді дозволяє знайти рішення рівняння (або нерівності) безпосередньою підстановкою чисел з ОПЗ.
Приклад 2.5.1 Вирішите рівняння
. (8)
Рішення. ОПЗ цього рівняння складається із всіх х, одночасно задовольняючим умовам і , тобто ОПЗ є порожня множина. Цим рішення рівняння й завершується, тому що встановлено, що жодне число не може бути рішенням, тобто що рівняння не має корінь.
Відповідь: O.
Приклад 2.5.2 Вирішите рівняння
. (9)
Рішення. ОПЗ цього рівняння складається із всіх x, одночасно задовольняючим умовам , , , тобто ОПЗ є . Підставляючи ці значення х у рівняння (9), одержуємо, що його ліва й права частини рівно 0, а це означає, що всі , є його рішеннями.
Відповідь:
Приклад 2.5.3 Вирішите нерівність
. (10)
Рішення. ОПЗ нерівності (10) є всі х, що задовольняють умові . Ясно, що х = 1 не є рішенням нерівності (10). Для х із проміжку маємо , а . Отже, всі х із проміжку є рішеннями нерівності (10).
Відповідь: .
Приклад 2.5.4 [26] Вирішите нерівність
. (11)
Рішення. ОПЗ нерівності (11) є всі х із проміжку . Розіб'ємо цю множину на два проміжки й .
Для х із проміжку маємо , . Отже, на цьому проміжку, і тому нерівність (11) не має рішень на цьому проміжку.
Нехай х належить проміжку , тоді й . Отже, для таких х, і, виходить, на цьому проміжку нерівність (11) також не має рішень.
Отже, нерівність (11) рішень не має.
Відповідь: O.
... допомогою цієї програми учень може сам перевіряти набуті знання, і вчитель може перевіряти знання певного учня. Вступ. МЕТА РОБОТИ - системазувати відомості про показникові та логарифмічні рівняння й нерівності та їх системи в шкільному курсі алгебри старшої школи і розкрити роль і місце вивчення показникових та логарифмічних рівняньта нерівностей в школі та вибрати методику подання цієї теми. ...
... , рівняння прийме вид: Очевидно, що , для всіх і Отже, останнє рівняння рівносильне системі: Тим самим, ми довели, що при , рівняння має єдине рішення. Відповідь. . тригонометричний рівняння комбінований графічний Рішення з дослідженням функції Приклад [??] Доведіть, що всі рішення рівняння і- цілі числа. Рішення. Основний період вихідного рівняння дорівнює . Тому ...
... Зауваження. Отже, при рішенні рівнянь із радикалами потрібне вміти користуватися кожним із цих методів і вибирати в кожному випадку оптимальний. 3. Не стандартні методи рішення ірраціональних рівнянь Існують ірраціональні рівняння, які вважаються для школярів звичайних освітніх шкіл задачами підвищених труднощів. Для рішення таких рівнянь краще застосовувати не традиційні методи, а прийоми, ...
... і різної ширини смужок зі зворотньої сторони копії(несправність механізму термічного закріплення зображення). 5. Методи і технічні засоби дослідження документів на право водіння, володіння і користування автотранспортом При дослідженні документів виявлення і вивчення особливостей і ознак проводиться шляхом спостереження, тобто зорового сприйняття. Але при звичайних умовах спостереження і ...
0 комментариев