3.  Тождественные квази-средние

Квази-среднее  определено, если задана функция . Возникает естественный вопрос, справедливо ли обратное предложение: если  для любых  или  и  –тождественны, то следует ли отсюда, что задающие их функции  и  также тождественны. Ответ на этот вопрос даёт следующая

Теорема 4. Необходимым и достаточным условием тождественности квази-средних  и  является условие , где  .

Доказательство. Если указанное условие выполняется, то

, и поэтому

= или = для любых , то есть условие достаточно.

Обратно, пусть =, = или . Обозначая  и , перепишем =.

Сведём это равенство к функциональному уравнению. Возьмём точку из области значений функции  и представим . Тогда = или =. Полагая , где  для каждого i, найдём =,  где не зависит от .

Поэтому =, что с обозначениями , ,  перепишется так: .

Тогда решением этого функционального уравнения будет функция , , где . Так как , то , или,  если взять .

Таким образом, чтобы задать одно и то же квази-среднее  мы можем взять любую функцию из целого класса функций , где а≠0 и b – произвольные постоянные, и другого способа получить тождественные квази-средние не существует.


Информация о работе «Обобщение классических средних величин»
Раздел: Математика
Количество знаков с пробелами: 31605
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
48853
0
9

... рассматриваться как определенные независимо одна от другой. Зависимость между силой, массой и ускорением. Второй закон Ньютона Данную зависимость с точностью, которая возможна в демонстрационном эксперименте, устанавливают на опыте, Поскольку согласно принятой в стабильном учебнике методике сначала устанавливается только способ задания некоторой силы «безразлично какой именно!», в опытах ...

Скачать
127645
11
0

... учетной информации; - порядок контроля за хозяйственными операциями. Таким образом, отчетность организации представляет собой единую систему информации об ее имущественном и финансовым положении. 2. Анализ финансово - хозяйственной деятельности предприятия (на примере СП «Энергосбыт»)   2.1 Технико-экономическая характеристика предприятия СП «Энергосбыт» - филиала ОАО «РЖД» Куйбышевская ...

Скачать
57498
1
0

... politique, ou Simple exposition de la maniere dont se forment, se distribuent et se consomment les richesses»] (1803) Ж. Б. Сэ был крупнейшим представителем классической школы во Франции. Из всех представителей классической политической экономии он, пожалуй, удостоился наиболее яростной критики представителей многих еретических направлений в экономической науке - от марксистов до кейнсианцев. ...

Скачать
100849
14
9

... являются временные структуры коры головного мозга, возникающие при одновременном или последовательном воздействии двух или более раздражителей [31, с. 162].1.2 Психолого-педагогические предпосылки формирования ассоциативного мышления у учащихся средней школы В подростковом возрасте происходит развитие способностей, процессов мышления, приводящее к росту сознания, воображения, суждений и интуиции ...

0 комментариев


Наверх