7.4.4 Дешифратор
Дешифратором, або декодером називається комбінаційний логічний пристрій для перетворення чисел з двійкової системи відліку до десяткової. Відповідно до визначення дешифратор відноситься до класу перетворювачів коду. Розуміється, що кожному двійковому числу ставиться у відповідність сигнал, що формується на виході пристрою. Таким чином, дешифратор виконує операцію, обернену стосовно шифратора. Якщо число адресних входів дешифратора n пов’язано з числом його виходів m співвідношенням m = 2n, то дешифратор називають повним. В оберненому випадку, якщо m < 2n, дешифратор називають неповним.
Поведінку дешифратора описують таблицею дійсності, аналогічно до таблиці дійсності шифратора (дивись систему 3), але в цій таблиці вхідні і вихідні сигнали помінялися місцями. У відповідності до даної таблиці, так як вихідний сигнал дорівнює 1 тільки на одному, єдиному, наборі вхідних змінних, тобто для одної конституєнти одиниці, алгоритм роботи дешифратора описується системою рівнянь виду:
х0 = ;
х1 = ; (4)
х2 = ;
і так далі, де Qi – значення логічної змінної на і-ому вході пристрою.
В загальному випадку система (4) має вид:
хі = (Q3Q2Q1Q0)і, (5)
де, xi – сигнал на і-ому виході шифратора; (Q3Q2Q1Q0)і – конституанта одиниці, що відповідає двійковому коду і-ої десяткової цифри.
Неважко помітити, що функція алгебраїчної логіки дешифратора (4) відрізняється від функції алгебраїчної логіки демультиплексора (2) лише наявністю в останній додаткового множника, що відповідає значенню сигналу на інформаційному вході D. Тому при D = 1 демультиплексор функціонує як дешифратор. Обернене перетворення дешифратора в демультиплексор вимагає введення двох допоміжних логічних елементів І, що виконують операцію логічного множення між загальним сигналом інформаційного входу D і відповідним логічним результатом множення адресних сигналів (Q3Q2Q1Q0).
Використовуючи дешифратор, можливо побудувати і схему мультиплексора. Для цього схему з рис. 7.4.5,а необхідно доповнити чотирма вихідними логічними елементами АБО (рис. 7.4.5,б).
а) б)
Рис. 7.4.5. Реалізація демультиплексора (а) і мультиплексора (б) з використанням дешифратора
При розробці інтегральних схем використовують декілька логічних структур дешифратора. Їх головна відмінність полягає в швидкодії і кількості використаних елементарних логічних елементів.
Найбільш швидкодійним і в той же час найбільш складним є дешифратор, що прямо реалізує систему функцій алгебри логіки (4). Такий дешифратор називається одноступінчастим або паралельним. Його структурна схема аналогічна до схеми демультиплексора (дивись рис. 7.4.2) за умови D = 1.
Вважаючи, що для реалізації обробки одного вхідного логічного сигналу необхідна деяка умовна одиниця апаратних засобів, число одиниць цих апаратних засобів для n-розрядного дешифратора визначається виразом:
N1 = n2n.
На рис. 7.4.6 наведено умовне графічне зображення дешифратора. Воно відповідає інтегральній схемі двійково-десяткового дешифратора типа 564ИД1.
Якщо при проектуванні основною вимогою є простота системного рішення, використовують інші структурні схеми дешифраторів. Однак, спрощення структури досягається за рахунок падіння швидкодії.
Рис. 7.4.6. Умовне графічне позначення дешифратора
Мікросхеми дешифраторів часто мають входом дозволу роботи E (вхід стробування). Наявність цього входу дозволяє на основі готових інтегральних схем при необхідності збільшення розрядності вхідного коду створювати структури дешифраторного дерева.
7.4.5 Програми реалізації мультиплексорів, демультиплексорів, шифраторів, дешифраторів в інтегрованому середовищі MAX+PLUS II
Програма для реалізації шифратора 10 на 4 (опис таблицею дійсності шифратора) за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
Subdesign shifrator1
(
XIP[9..0] : input; - вхідні сигнали
QOP[3..0] : output; - вихідні сигнали
)
Begin
Table
XIP[] => QOP[];
b"0000000001" => b"0000";
b"0000000010" => b"0001";
b"0000000100" => b"0010";
b"0000001000" => b"0011";
b"0000010000" => b"0100";
b"0000100000" => b"0101";
b"0001000000" => b"0110";
b"0010000000" => b"0111";
b"0100000000" => b"1000";
b"1000000000" => b"1001";
End table;
End;
Програма для реалізації шифратора 10 на 4 (опис на поведінковому рівні шифратора) за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
Subdesign shifrator2
(
XIP[9..0] : input; - вхідні сигнали
QOP[3..0] : output; - вихідні сигнали
)
Begin
QOP[3]= XIP[8] + XIP[9];
QOP[2]= XIP[4] + XIP[5] + XIP[6] + XIP[7];
QOP[1]= XIP[2] + XIP[3] + XIP[6] + XIP[7];
QOP[0]= XIP[1] + XIP[3] + XIP[5]+ XIP[7] + XIP[9];
End;
Програма для реалізації 3-розрядного дешифратора з інверсними виходами за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
subdesign decipherer1
(
XIP[3..1] : input; - вхідні сигнали
QOP[7..0] : output; - вихідні сигнали
)
begin
case XIP[] is
when 0 => QOP = b"11111110";
when 1 => QOP = b"11111101";
when 2 => QOP = b"11111011";
when 3 => QOP = b"11110111";
when 4 => QOP = b"11101111";
when 5 => QOP = b"11011111";
when 6 => QOP = b"10111111";
when 7 => QOP = b"01111111";
end case;
end;
Програма для реалізації мультиплексора з 2 адресними входами, 4 інформаційними і входом дозволу роботи (опис емульованою таблицею дійсності мультиплексора) за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
subdesign multiplexer1
(
INFIN[4..1] : input; - інформаційні входи
ADRIN[2..1] : input; - адресні входи
ENA : input; - вхід дозволу роботи (вхід стробування)
Q : output; - вихід мультиплексора
)
begin
if ENA == 0 then - емуляція таблиці дійсності
case ADRIN[2..1] is
when 0 => Q = INFIN[1];
when 1 => Q = INFIN[2];
when 2 => Q = INFIN[3];
when 3 => Q = INFIN[4];
end case;
end if;
end;
- Примітка: компілятор AHDL не дозволяє присутності в
- таблиці дійсності змінних (параметрів), навіть якщо
- змінним (параметрам) раніше вже присвоєне фіксоване
- значення. Тому за логікою таблиці дійсності, на основі
- оператору вибору CASE, формується послідовність перевірки
- значень вхідних сигналів системи.
Програма для реалізації мультиплексора з 2 адресними входами, 4 інформаційними і входом дозволу роботи (опис на поведінковому рівні мультиплексора) за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
subdesign multiplexer2
(
INFIN[4..1] : input; - інформаційні входи
ADRIN[2..1] : input; - адресні входи
ENA : input; - вхід дозволу роботи (вхід стробування)
Q : output; - вихід мультиплексора
)
begin
Q = INFIN[1] & !ADRIN[2] & !ADRIN[1] & !ENA #
INFIN[2] & !ADRIN[2] & ADRIN[1] & !ENA #
INFIN[3] & ADRIN[2] & !ADRIN[1] & !ENA #
INFIN[4] & ADRIN[2] & ADRIN[1] & !ENA;
end;
- Примітка: Q - функція алгебри логіки, що описує роботу мультиплексора.
Програма для реалізації демультиплексора з 3 адресними входами, 1 інформаційним і входом дозволу роботи за допомогою мови AHDL в інтегрованому середовищі MAX+PLUS II має наступний вигляд:
subdesign demultiplexer1
(
ADRIN[3..1] : input; - адресний вхід
INFIN : input; - інформаційний вхід
ENA : input; - вхід дозволу роботи (вхід стробування)
Q[7..0] : output; - виходи демультиплексора
)
begin
if ENA == 0 then
case ADRIN[] is
when 0 => Q[0] = INFIN;
when 1 => Q[1] = INFIN;
when 2 => Q[2] = INFIN;
when 3 => Q[3] = INFIN;
when 4 => Q[4] = INFIN;
when 5 => Q[5] = INFIN;
when 6 => Q[6] = INFIN;
when 7 => Q[7] = INFIN;
end case;
end if;
end;
... цих проектів, їх компіляції, комп’ютерного моделювання, загрузки проекту на кристал ПЛІС. Програмні продукти фірм Xilinx та Altera на сьогоднішній день є найбільш поширеними САПР для проектування цифрових пристроїв на ПЛІС. Серед програмних продуктів Xіlіnx є як відносно прості вільно розповсюджувані системи, так і потужні інтегровані пакети, що дозволяють розробляти ПЛІС еквівалентної ємності бі ...
... КП, відповідно; X Offset, Y Offset – зсув точки підключення траси відносно геометричного центру КП по осях X і Y, відповідно. Таблиця апертур (Apertures) містить опис використовуваних апертур. Таблиця Layers містить список шарів, використовуваних OrCAD Layout. Шари можуть бути наступних типів: Routing – шар трасування; Plane – шар металізації; Drill – шар символів отворів; Jumper – шар ...
... результаты отчета. Они являются кульминационным пунктом отчета и должны быть разумными, хорошо определенными, перечисленными и обоснованными [11].Практика дистанционного образования с использованием Internet Шутилов Ф.В. Особенности заочного образования - в необходимости обеспечить высокий уровень знаний при значительно меньшем времени непосредственного личного общения студентов с преподавателем. ...
0 комментариев