Расчет железобетонной перемычки по предельным состояниям второй группы

Модернизация производства керамического кирпича
Общая характеристика проектируемого предприятия Сырьевая база, источники электроснабжения, транспортные связи Технические требования к выпускаемой продукции, правила приемки, маркировки, хранения и транспортировки Перечень основных и вспомогательных цехов Требования, предъявляемые к железобетонной перемычке в процессе эксплуатации, транспортирования и монтажа Расчет железобетонной перемычки по предельным состояниям первой группы Расчет железобетонной перемычки по предельным состояниям второй группы Расчет железобетонной перемычки на усилия, возникающие при изготовлении, транспортировании и монтаже Выбор и обоснование способа и схемы производства Расчет расхода компонентов Описание процесса производства Формовочно-перегрузочное отделение Производственно-технологические расчеты основных отделений Основное технологическое оборудование Транспортирующее и дозирующее оборудование Пылеосадительное оборудование и аспирационная система Вопросы стандартизации Мероприятия по экономии энергетических ресурсов Силовое оборудование, расход электроэнергии Мероприятия, обеспечивающие блокировку цехов и зонирование Расчёт сводной сметы затрат на модернизацию предприятия Определение себестоимости продукции Расчет годового экономического эффекта Защита населения и территорий в чрезвычайных ситуациях График строительства перекрытой щели
158944
знака
42
таблицы
6
изображений

2.5.2 Расчет железобетонной перемычки по предельным состояниям второй группы.

Данный этап включает в себя расчёты по образованию и раскрытию трещин нормальных к продольной оси, а также по деформации (определение прогиба). Отношение модулей упругости арматуры и бетона:

, (2.27)

где, ЕS – модуль упругости арматурной стали, МПа;

ЕВ – модуль упругости бетона, МПа.

Площадь приведённого сечения:

, (2.28)

где, АS – площадь стали, м2;

АВ – площадь бетона, м2.

Статический момент площади приведённого сечения относительно нижней грани находим по формуле:

, (2.29)


где, у1 – расстояние от центра тяжести арматуры до нижней грани сечения, м;

у – расстояние от центра тяжести прямоугольного сечения бетона до нижней грани сечения, м.

,

Расстояние от нижней грани сечения до центра тяжести приведённого сечения:

(2.30)

Момент инерции приведённого сечения находиться по формуле:

(2.31)

где, у1I – расстояние от ЦТ арматуры до ЦТ приведённого сечения, м;

уI – расстояние от центра тяжести прямоугольного сечения бетона до центра тяжести приведённого сечения, м.

Момент сопротивления приведённого сечения по растянутой зоне:

(2.32)

Упругопластический момент сопротивления приведённого сечения по растянутой зоне определяется по формуле:

(2.33)

где, γI – коэффициент, учитывающий влияние неупругих деформаций бетона растянутой зоны в зависимости от формы сечения (для прямоугольных γI = 1,75).

При расчёте по образованию трещин, нормальных к продольной оси, принимаем изгибающий момент, действующий при эксплуатации здания от нормативной полной нагрузки МН = 29,3 кН×м. Рассчитаем момент образования трещин по формуле:

(2.34)

где, R bt, ser – нормативное сопротивление бетона при растяжении, кПа.

Трещины в растянутой зоне образуются. Надо выполнить расчёт по раскрытию.

Напряжение в растянутой арматуре от действия постоянной и длительной нагрузки определяется по формуле:


(2.35)

где, МU,l – изгибающий момент от действия нормативной постоянной и длительной нагрузок, кН×м;

WS – момент сопротивления сечения по растянутой арматуре, м3.

(2.36)

где, z1 –плечо внутренней пары сил, м;

(2.37)

 

Напряжение в растянутой арматуре от действия полной нагрузки:

(2.38)

где, МU – изгибающий момент от действия полной нормативной нагрузки, кН×м;


Формула ширины раскрытия трещин:

(2.39)

где, μ – коэффициент армирования сечения;

δ – коэффициент, учитывающий работу элемента (для изгибаемых δ =1);

η – коэффициент профиля продольной арматуры (для периодического η=1);

φl – коэффициент, учитывающий длительность воздействия нагрузки;

d– диаметр арматуры, мм.

(2.40)

Принимаем φl = 1, в силу непродолжительного воздействия полной, постоянной и длительной нагрузок. Тогда:

(2.41)

Ширина раскрытия трещин от непродолжительного действия полной нагрузки:

Ширина раскрытия трещин от непродолжительного действия постоянной и длительной нагрузок:

Ширина раскрытия трещин от продолжительного действия постоянной и длительной нагрузок:

Непродолжительная ширина раскрытия трещин:

(2.42)

Непродолжительная ширина раскрытия трещин:

(2.43)

Предельно допустимая ширина раскрытия трещин: аcrc = 0,4 мм; аcrc,l = 0,3 мм. Вывод: ширина раскрытия трещин лежит в пределах допустимых величин.

Прогиб изгибаемых элементов без предварительного натяжения от равномерно распределённой нагрузки находим по формуле /Байков c 231/:

(2.44)

где, q – постоянная и длительная нормативные нагрузки, кН/м;

l –длина изделия, м;

В– жёсткость приведённого сечения, кН×м2.

Жёсткость приведённого сечения для тяжёло бетона, с учётом коэффициента 0,85, учитывающего снижение жёсткости под влиянием неупругих деформаций бетона растянутой зоны /Байков c 226/:

(2.45)

Предельно допустимый прогиб значительно превышает данный параметр и, следовательно, перемычка удовлетворяет всем эксплуатационным условиям, то есть будет нормально работать в конструкции.


Информация о работе «Модернизация производства керамического кирпича»
Раздел: Промышленность, производство
Количество знаков с пробелами: 158944
Количество таблиц: 42
Количество изображений: 6

Похожие работы

Скачать
95787
14
5

... 1. Зола Влажность, % (не более) 55 2.Песок (крупнозернистый) Влажность, % Фракция 5 1,5-0,15 мм 2.1 Характеристика используемого сырья В данном проекте для производства керамического кирпича в качестве основного компонента используем глину Малоступкинского месторождения. Таблица 2.3. Химический состав глины Малоступкинского месторождения Оксид SiO2 Al2O3 ...

Скачать
152188
35
13

... 4280 tОБЖ=1000оС СО, NО2, СН4 5 Повышение уровня шума оказывает вредное воздействие на организм человека. Производственные процессы на предприятии в разрабатываемом проекте сопровождаются шумом, непревышающим установленные нормы. Контроль шумового воздействия на производстве осуществляется в соответствии с ГОСТ 12.1.003-83 «Шум. Общие требования безопасности» и СН 3223-85 «Санитарные нормы ...

Скачать
39629
5
11

... 15…25% от гидравлического сопротивления всего аппарата, а материал фильтрующего элемента обладает повышенными звукопоглощающими свойствами. Внедрение модернизированной пылеулавливающей установки в технологический процесс производства керамической черепицы позволит довести степень очистки запыленного воздуха от пыли до 97 – 98%. ЗАКЛЮЧЕНИЕ Курсовая работа состоит из 36 страниц, 5 таблиц, 4 ...

Скачать
28275
6
5

... , полусухое прессование черепицы из порошкообразных масс, сушка и обжиг черепицы на поточно-конвейерных линиях. Другим наиболее распространенным способом производства керамической черепицы является пластический способ, блок - схема которого представлена на рисунке 2. Полученная в результате перемешивания пластичная масса с помощью шнекового устройства уплотняется и выдавливается через отверстия ...

0 комментариев


Наверх