Уточняем межосевое расстояние передачи

Проектирование редуктора
46223
знака
1
таблица
15
изображений

5.6 Уточняем межосевое расстояние передачи

a = 0,25 [L – +]

где = 0,5(d + d) = 0,53,14 (100 + 224) = 509 мм

= 0,25 (d– d)= 0,25 (224 – 100)= 3844 мм

a = 0,25 [1000 – 509 + ] = 237,4 мм

По рекомендации [2, с. 153] угол обхвата на малом шкиве равен:

= 180= 180 = 150

 = 150 > [] = 120, следовательно, угол охвата на малом шкиве имеет достаточную величину.

5.7 Допускаемая мощность, которую может передать один ремень в заданных условиях эксплуатации

[P] = (PCC + P) C, где


P– номинальная мощность, которую передает ремень в определенных условиях (при  = 180; U = 1; V = 10 м/с; длина L; спокойная нагрузка).

С– коэффициент, учитывающий влияние на долговечность длины ремня в зависимости от отношения данной длины ремня к исходной L.

C – коэффициент, учитывающий влияние на тяговую способность угла обхвата.

C – коэффициент, учитывающий режим работы передачи.

P– поправка, учитывающая уменьшение влияния на долговечность изгиба ремня на большем шкиве с увеличением передаточного отношения.

Она рассчитывается по формуле:

P = 10Тn,

где Т – поправка к моменту на быстроходном валу в зависимости от передаточного отношения (табл. 8.8 [2, c. 158])

при U = 2,28 и типе ремня А имеем Т = 1,1 Нм

По табл. 6.3 [3, с. 39] определяем номинальную мощность P. Для ремня сечением типа А при n = 950 об/мин и d= 100 мм, P = 0,95 кВт

По рекомендациям [2, с. 156] C = 0,92 при  = 150

С определяем по табл. 8.7 [2, с. 158]

Для ремня типа А имеем L = 1700 мм, тогда L/ L = 1000/1700 = 0,59 значит С = 0,89

Коэффициент C принимаем по табл. 6.7 [3, с. 41]. При заданном характере нагрузки принимаем C = 0,95.

Допускаемая мощность, передаваемая одним ремнем:

[P] = (0,950,920,89 + 101,1950) 0,95 = 0,84 кВт



Информация о работе «Проектирование редуктора»
Раздел: Промышленность, производство
Количество знаков с пробелами: 46223
Количество таблиц: 1
Количество изображений: 15

Похожие работы

Скачать
32354
0
4

... в часах: где n1 –частота вращения ведущего вала редуктора. Ведомый вал несёт такие же нагрузки, как и ведущий: Fa=...H; Fr=...H; Ft=...H. Нагрузка на вал от муфты Fм=...Н. Из первого этапа компоновки: L2=...м. L3=...м. Составляем расчётную схему вала: Реакции опор: Горизонтальная плоскость Проверка: Вертикальная плоскость:   Проверка: ...

Скачать
22708
0
3

... 5 установить в опоры скольжения корпуса поз.11. 7. Установить крышку поз12 и прикрутить ее винтами поз.15 и штифтами поз.20. Заключение В курсовом проекте спроектирован редуктор программного механизма. Все требования удовлетворены, и поставленные задачи выполнены. Достигнута необходимая точность работы устройства. В конструкции имеются унифицированные детали. Использованы типовые методы ...

Скачать
45166
14
5

... напряжения σэкв = 1, 3 Fр / А (109) σэкв = 1, 3 *1780, 08 / 84, 2 = 27, 48 Н/мм2 [σ] 27, 48  75 Проверить прочность стяжных винтов подшипниковых узлов быстроходного вала цилиндрического редуктора. Rу – большая из реакций в вертикальной плоскости в опорах подшипников быстроходного вала, Rу = 2256, 08 Н. Диаметр винта d2 = 12 мм, шаг резьбы Р = 1, 75 мм. Класс прочности 5.6 ...

Скачать
30705
3
5

... для решения данной задачи является редуктор, который представляет систему зубчатых передач выполненных в герметично закрытом корпусе. Заданием данного курсового проекта является спроектировать червячный редуктор общего назначения, предназначенный для длительной эксплуатации и мелкосерийного производства. 2. Расчётная часть. 2.1. Кинематический расчёт и выбор эл. двигателя При ...

0 комментариев


Наверх