3.1 Постановка задачи
Требуется найти решение системы линейных уравнений:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
a21x1 + a22 x2 + a23x3 + … + a2nxn = b2
a31x1 + a32 x2 + a33x3 + … + a3nxn = b3 (3.1)
.
an1x1 + an2 x2 + an3x3 + … + annxn = bn
или в матричной форме:
Ax = b, (3.2)
где
a11 a12 a13 … a1n x1 b1
a21 a22 a23 … a2n x2 b2
A = a31 a32 a33 … a3n x =x3 , b =b3
an1 an2 an3 ann xn bn
По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det A 0) и значение каждого из неизвестных определяется следующим образом:
xj = , j = 1, …, n, (3.3)
где det Aj – определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частейb.
Непосредственный расчет определителей для больших n является очень трудоемким по сравнению с вычислительными методами.
Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.
Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших n требуется большое количество операций, и возникает опасность накопления погрешностей.
Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.
Среди прямых методов наиболее распространенным является метод исключения Гаусса и его модификации, Наиболее распространенными итерационными методами является метод простых итераций Якоби и метод Зейделя.
Эти методы будут рассмотрены в следующих разделах.
3.2 Метод исключения Гаусса. Схема единственного деления
Основная идея метода исключений Гаусса состоит в том, что система уравнений (3.1) приводится к эквивалентной ей системе с верхней треугольной матрицей (прямой ход исключений), а затем неизвестные вычисляются последовательной подстановкой (обратный ход исключений).
Рассмотрим сначала простейший метод исключения Гаусса, называемый схемой единственного деления.
Прямой ход состоит из n – 1 шагов. На первом шаге исключается переменная x1 из всех уравнений, кроме первого. Для этого нужно из второго, третьего, …, n-го уравнений вычесть первое, умноженное на величину
m = , i = 2, 3, …, n. (3.4)
При этом коэффициенты при x1 обратятся в нуль во всех уравнениях, кроме первого.
Введем обозначения:
a = aij – ma1j , b= bi – mb1. (3.5)
Легко убедиться, что для всех уравнений, начиная со второго, a= 0, i = 2, 3, …, n. Преобразованная система запишется в виде:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
ax2 + ax3 + … + axn = b
a x2 + ax3 + … + axn = b (3.6)
ax2 + ax3 + … + axn = b
Все уравнения (3.6), кроме первого, образуют систему (n – 1)-го порядка. Применяя к ней ту же процедуру, мы можем исключить из третьего, четвертого, …, n-го уравнений переменную x2. Точно так же исключаем переменную x3 из последних n – 3 уравнений.
На некотором k-ом шаге в предположении, что главный элемент k-ого шага a0, переменная xk исключается с помощью формул:
m = ,
a = a – ma ,
b= b – mb, i, j = k + 1, k + 2, …, n. (3.7)
Индекс k принимает значения 1, 2, …, n – 1.
При k = n – 1 получим треугольную систему:
a11x1 + a12 x2 + a13x3 + … + a1nxn = b1
ax2 + ax3 + …+ axn = b
ax3 + …+ axn = b (3.8)
axn = b
с треугольной матрицей An.
Приведение системы (3.1) к треугольному виду (3.8) составляет прямой ход метода Гаусса.
При использовании метода Гаусса нет необходимости в предварительном обосновании существования и единственности решения (т. е. доказательства, что det A ¹ 0). Если на k-ом шаге все элементы a (i = k, k + 1, …, n) окажутся равными нулю, то система (3.1) не имеет единственного решения.
Обратный ход состоит в вычислении переменных. Из последнего уравнения (3.8) определяем xn... Подставляя его в предпоследнее уравнение, находим xn-1, и т. д. Общие формулы имеют вид:
xn = ,
xk = (b- a xk+1 - a xk+2 - … - a xn), k = n – 1, n – 2, …, 1 (3.9)
Трудоемкость метода. Для реализации метода исключения Гаусса требуется примерно 2/3n3 операций для прямого хода и n2 операций для обратного хода. Таким образом, общее количество операций составляет примерно 2/3n3 + n2.
Пример 3.1.
Применим метод исключения Гаусса по схеме единственного деления для решения системы уравнений:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.4x1 + 0.5x2 + 4.0x3 – 8.5x4 = 21.9
0.3x1 – 1.0x2 + 1.0x3 + 5.2x4 = – 3.9 (3.10)
1.0x1 + 0.2x2 + 2.5x3 – 1.0x4 = 9.9
Будем делать округление чисел до четырех знаков после десятичной точки.
Прямой ход. 1-ый шаг. Вычислим множители:
m = = = 0.2; m = = = 0.15; m = = = 0.5.
Вычитая из второго, третьего и четвертого уравнений системы (3.10) первое уравнение, умноженное соответственно на m, m, m, получим новую систему:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
–1.15x2 + 1.015x3 + 5.05x4 = – 4.305 (3. 11)
– 0.30x2 + 2.55x3 – 1.50x4 = 8.55
2-ой шаг. Вычислим множители:
m = = = – 3.83333; m = = = –1.0.
Вычитая из третьего и четвертого уравнений системы (3.11) второе уравнение, умноженное соответственно на m и m, приходим к системе:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
16. 425x3 – 28.300x4 = 77.575 (3.12)
6.570x3 – 10.200x4 = 29.910
3-ий шаг. Вычислим множитель:
m = = = 0.4.
Вычитая из четвертого уравнения системы (3.12) третье, умноженное на m, приведем систему к треугольному виду:
2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7
0.3x2 + 4.02x3 – 8.70x4 = 21.36
16. 425x3 – 28.300x4 = 77.575 (3.13)
1.12x4 = –1.12
Обратный ход. Из последнего уравнения системы (3.13) находим x4 = 1.000. Подставляя значение x4 в третье уравнение, получим x3 = 2.000. Подставляя найденные значения x4 и x3 во второе уравнение, найдем x2 = 3.000. Наконец, из первого уравнения, подставив в него найденные значения x4, x3 и x2, вычислим x1 = –1.000.
Итак система (3.10) имеет следующее решение:
x1 = 1.000, x2 = 2.000, x3 = 3.000, x4 = – 1.000.
... . Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции. Введем некоторые термины. Пусть имеется некоторая чис- ловая матрица. Привести строку этой матрицы означает выде-лить в строке минимальный элемент (его называют константой приведения) ...
... если - предельная абсолютная погрешность приближённого числа , то (1.2) отсюда следует, что (1.3) Значение предельной абсолютной погрешности, обычно, подбирается интуитивно по смыслу задачи. Пример 2: Определить предельную абсолютную погрешность числа , заменяющего число , точное значение которого нам неизвестно. Так как мы знаем, что , ...
... удивили меня…, хоть речь идёт обо мне самой. Они действительно написаны прекрасным стилем, который превосходит стиль самого очерка" /2/. 2.3. Рождение первенца и критическое перенапряжение Августа Ада Лавлейс работает с большим напряжением. В письмах к Бэббиджу она неоднократно жалуется на утомление, болезни, плохое самочувствие. Наконец, 6 августа Бэббидж отсылает Аде свои последние замечания ...
... в Украине, бывшем Советском Союзе и за рубежом научная школа теоретического программирования. В 2001-м году ее не стало... Но не только в научном плане велика роль женщин в развитии вычислительной техники. Со временем образуется огромное количество различных фирм по разработке и продаже программного и аппаратного обеспечения. Следовательно, разыгрываются человеческие трагедии капиталистического ...
0 комментариев