Постановка задачи

100779
знаков
18
таблиц
23
изображения

3.1 Постановка задачи

Требуется найти решение системы линейных уравнений:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

a21x1 + a22 x2 + a23x3 + … + a2nxn = b2

a31x1 + a32 x2 + a33x3 + … + a3nxn = b3 (3.1)

.

an1x1 + an2 x2 + an3x3 + … + annxn = bn

или в матричной форме:

Ax = b, (3.2)

где

a11 a12 a13 … a1n x1 b1

a21 a22 a23 … a2n x2 b2

A = a31 a32  a33 … a3n x =x3 , b =b3

 

an1 an2 an3 ann xn bn

По правилу Крамера система n линейных уравнений имеет единственное решение, если определитель системы отличен от нуля (det A 0) и значение каждого из неизвестных определяется следующим образом:

 

xj = , j = 1, …, n, (3.3)


где det Aj – определитель матрицы, получаемой заменой j-го столбца матрицы A столбцом правых частейb.

Непосредственный расчет определителей для больших n является очень трудоемким по сравнению с вычислительными методами.

Известные в настоящее время многочисленные приближенные методы решения систем линейных алгебраических уравнений распадаются на две большие группы: прямые методы и методы итераций.

Прямые методы всегда гарантируют получение решения, если оно существуют, однако, для больших n требуется большое количество операций, и возникает опасность накопления погрешностей.

Этого недостатка лишены итерационные методы, но зато они не всегда сходятся и могут применяться лишь для систем определенных классов.

Среди прямых методов наиболее распространенным является метод исключения Гаусса и его модификации, Наиболее распространенными итерационными методами является метод простых итераций Якоби и метод Зейделя.

Эти методы будут рассмотрены в следующих разделах.

 

3.2 Метод исключения Гаусса. Схема единственного деления

Основная идея метода исключений Гаусса состоит в том, что система уравнений (3.1) приводится к эквивалентной ей системе с верхней треугольной матрицей (прямой ход исключений), а затем неизвестные вычисляются последовательной подстановкой (обратный ход исключений).

Рассмотрим сначала простейший метод исключения Гаусса, называемый схемой единственного деления.

Прямой ход состоит из n – 1 шагов. На первом шаге исключается переменная x1 из всех уравнений, кроме первого. Для этого нужно из второго, третьего, …, n-го уравнений вычесть первое, умноженное на величину


m = , i = 2, 3, …, n. (3.4)

При этом коэффициенты при x1 обратятся в нуль во всех уравнениях, кроме первого.

Введем обозначения:

a = aij – ma1j , b= bi – mb1. (3.5)

Легко убедиться, что для всех уравнений, начиная со второго, a= 0, i = 2, 3, …, n. Преобразованная система запишется в виде:

 

 a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

ax2 + ax3 + … + axn = b

a x2 + ax3 + … + axn = b (3.6)

 

ax2 + ax3 + … + axn = b

Все уравнения (3.6), кроме первого, образуют систему (n – 1)-го порядка. Применяя к ней ту же процедуру, мы можем исключить из третьего, четвертого, …, n-го уравнений переменную x2. Точно так же исключаем переменную x3 из последних n – 3 уравнений.

На некотором k-ом шаге в предположении, что главный элемент k-ого шага a0, переменная xk исключается с помощью формул:

 

m = ,

a = a – ma ,


b= b – mb, i, j = k + 1, k + 2, …, n. (3.7)

Индекс k принимает значения 1, 2, …, n – 1.

При k = n – 1 получим треугольную систему:

a11x1 + a12 x2 + a13x3 + … + a1nxn = b1

ax2 + ax3 + …+ axn = b

ax3 + …+ axn = b (3.8)

 

axn = b

с треугольной матрицей An.

Приведение системы (3.1) к треугольному виду (3.8) составляет прямой ход метода Гаусса.

При использовании метода Гаусса нет необходимости в предварительном обосновании существования и единственности решения (т. е. доказательства, что det A ¹ 0). Если на k-ом шаге все элементы a (i = k, k + 1, …, n) окажутся равными нулю, то система (3.1) не имеет единственного решения.

Обратный ход состоит в вычислении переменных. Из последнего уравнения (3.8) определяем xn... Подставляя его в предпоследнее уравнение, находим xn-1, и т. д. Общие формулы имеют вид:

xn  = ,

xk  = (b- a xk+1 - a xk+2 - … - a xn), k = n – 1, n – 2, …, 1 (3.9)


Трудоемкость метода. Для реализации метода исключения Гаусса требуется примерно 2/3n3 операций для прямого хода и n2 операций для обратного хода. Таким образом, общее количество операций составляет примерно 2/3n3 + n2.

Пример 3.1.

Применим метод исключения Гаусса по схеме единственного деления для решения системы уравнений:

2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7

0.4x1 + 0.5x2 + 4.0x3  –  8.5x4 = 21.9

0.3x1  – 1.0x2 + 1.0x3 + 5.2x4 = – 3.9 (3.10)

1.0x1 + 0.2x2 + 2.5x3  –  1.0x4 = 9.9

Будем делать округление чисел до четырех знаков после десятичной точки.

Прямой ход. 1-ый шаг. Вычислим множители:

 

m =  =  = 0.2; m =  =  = 0.15; m =  =  = 0.5.

Вычитая из второго, третьего и четвертого уравнений системы (3.10) первое уравнение, умноженное соответственно на m, m, m, получим новую систему:

2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7

0.3x2 + 4.02x3 – 8.70x4 = 21.36

–1.15x2 + 1.015x3 + 5.05x4 = – 4.305 (3. 11)

– 0.30x2 + 2.55x3  – 1.50x4 = 8.55


2-ой шаг. Вычислим множители:

 

m =  =  = – 3.83333; m =  =  = –1.0.

Вычитая из третьего и четвертого уравнений системы (3.11) второе уравнение, умноженное соответственно на m и m, приходим к системе:

2.0x1 + 1.0x2 – 0.1x3 + 1.0x4 = 2.7

0.3x2 + 4.02x3 – 8.70x4 = 21.36

16. 425x3  – 28.300x4 = 77.575 (3.12)

6.570x3  – 10.200x4 = 29.910

3-ий шаг. Вычислим множитель:

 

m =  =  = 0.4.

Вычитая из четвертого уравнения системы (3.12) третье, умноженное на m, приведем систему к треугольному виду:

2.0x1 + 1.0x2 –  0.1x3 + 1.0x4 = 2.7

0.3x2 + 4.02x3 – 8.70x4 = 21.36

16. 425x3  – 28.300x4 = 77.575 (3.13)

1.12x4 = –1.12

 

Обратный ход. Из последнего уравнения системы (3.13) находим x4 = 1.000. Подставляя значение x4  в третье уравнение, получим x3 = 2.000. Подставляя найденные значения x4  и x3 во второе уравнение, найдем x2 = 3.000. Наконец, из первого уравнения, подставив в него найденные значения x4, x3 и x2, вычислим x1 = –1.000.

Итак система (3.10) имеет следующее решение:

 

x1 = 1.000, x2 = 2.000, x3 = 3.000, x4 = – 1.000.

 


Информация о работе «Вычислительная математика»
Раздел: Математика
Количество знаков с пробелами: 100779
Количество таблиц: 18
Количество изображений: 23

Похожие работы

Скачать
10356
0
0

... . Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции. Введем некоторые термины. Пусть имеется некоторая чис- ловая матрица. Привести строку этой матрицы означает выде-лить в строке минимальный элемент (его называют константой приведения) ...

Скачать
7721
1
1

... если  - предельная абсолютная погрешность приближённого числа , то  (1.2) отсюда следует, что  (1.3) Значение предельной абсолютной погрешности, обычно, подбирается интуитивно по смыслу задачи. Пример 2: Определить предельную абсолютную погрешность числа , заменяющего число , точное значение которого нам неизвестно. Так как мы знаем, что , ...

Скачать
37333
0
0

... удивили меня…, хоть речь идёт обо мне самой. Они действительно написаны прекрасным стилем, который превосходит стиль самого очерка" /2/. 2.3. Рождение первенца и критическое перенапряжение Августа Ада Лавлейс работает с большим напряжением. В письмах к Бэббиджу она неоднократно жалуется на утомление, болезни, плохое самочувствие. Наконец, 6 августа Бэббидж отсылает Аде свои последние замечания ...

Скачать
54819
0
0

... в Украине, бывшем Советском Союзе и за рубежом научная школа теоретического программирования. В 2001-м году ее не стало... Но не только в научном плане велика роль женщин в развитии вычислительной техники. Со временем образуется огромное количество различных фирм по разработке и продаже программного и аппаратного обеспечения. Следовательно, разыгрываются человеческие трагедии капиталистического ...

0 комментариев


Наверх