Интерполяция функции многочленами Лагранжа

100779
знаков
18
таблиц
23
изображения

4.3 Интерполяция функции многочленами Лагранжа

Рассмотрим другой подход к приближению функции многочленами. Пусть функция y = f(x) определена на отрезке [a, b] и известны значения этой функции в некоторой системе узлов xi Î [a, b], i = 0, 1, … , n. Например, эти значения получены в эксперименте при наблюдении некоторой величины в определенных точках или в определенные моменты времени x0, x1, … , xn. Обозначим эти значения следующим образом: yi = f(xi), i = 0, 1, … , n. Требуется найти такой многочлен P(x) степени m,

 

P(x) = a0 + a1x + a2x2 + … + amxm, (4.5)

который бы в узлах xi, i = 0, 1, … , n принимал те же значения, что и исходная функция y = f(x), т. е.

 

P(xi) = yi, i = 0, 1, … , n. (4.6)

Многочлен (4.5), удовлетворяющий условию (4.6), называется интерполяционным многочленом.

Другими словами, ставится задача построения функции y = P(x), график которой проходит через заданные точки (xi, yi), i = 0, 1, … , n (рис. 4.1).

Рис. 4.1

Объединяя (4.5) и (4.6), получим:

 

a0 + a1xi + a2x + … + amx = yi,i = 0, 1, … , n. (4.7)

В искомом многочлене P(x) неизвестными являются m +1 коэффициент a0 , a1, a2, …, am. Поэтому систему (4.7) можно рассматривать как систему из n +1 уравнений с m +1 неизвестными. Известно, что для существования единственного решения такой системы необходимо , чтобы выполнялось условие: m = n. Таким образом, систему (4.7) можно переписать в развернутом виде:

a0 + a1 x0 + a2x + … + anx = y0

a0 + a1 x1 + a2x + … + anx = y1

a0 + a1 x2 + a2x + … + anx = y2 (4.8)

.

a0 + a1 xn + a2x + … + anx = yn


Вопрос о существовании и единственности интерполяционного многочлена решает следующая теорема:

 

Теорема 4.1. Существует единственный интерполяционный многочлен степени n, удовлетворяющий условиям (4.6).

Имеются различные формы записи интерполяционного многочлена. Широко распространенной формой записи является многочлен Лагранжа

 

Ln(x) =  = . (4.9)

В частности, для линейной и квадратичной интерполяции по Лагранжу получим следующие интерполяционные многочлены:

 

L1(x) = y0+ y1,

L2(x) = y0+y1+ y2.

 

Пример 4.3.

Построим интерполяционный многочлен Лагранжа по следующим данным:

x

0 2 3 5

y

1 3 2 5

Степень многочлена Лагранжа для n +1 узла равна n. Для нашего примера многочлен Лагранжа имеет третью степень. В соответствии с (4.9)


L3(x) = 1+3 + 2 + 5 = 1 + x –  x2 + x3.

 

Пример 4.4.

Рассмотрим пример использования интерполяционного многочлена Лагранжа для вычисления значения заданной функции в промежуточной точке. Эта задача возникает, например, когда заданы табличные значения функции с крупным шагом, а требуется составить таблицу значений с маленьким шагом.

Для функции y = sinx известны следующие данные.

x

0 p/6 p/3 p/2

y

0 ½

1

Вычислим y(0.25).

Найдем многочлен Лагранжа третьей степени:

 

L3(x) = 0 + +

 + 1.

При x = 0.25 получим y(0.25) = sin 0.25 » 0.249.

Погрешность интерполяции. Пусть интерполяционный многочлен Лагранжа построен для известной функции f(x). Необходимо выяснить, насколько этот многочлен близок к функции в точках отрезка [a, b], отличных от узлов. Погрешность интерполяции равна |f(x) – Pn(x)|. Оценку погрешности можно получить на основании следующей теоремы.

Теорема 4.2. Пусть функция f(x) дифференцируема n +1 раз на отрезке [a, b], содержащем узлы интерполяции xi Î [a, b], i = 0, 1, … , n. Тогда для погрешности интерполяции в точке x Î [a, b] справедлива оценка:

|f(x) – Ln(x)|£ |wn+1(x)|, (4.10)

где

 

Mn+1 = |f(n+1)(x)|,

wn+1(x) = (x – x0)(x – x1)…. (x – xn).

Для максимальной погрешности интерполяции на всем отрезке [a, b] справедлива оценка:

|f(x) – Ln(x)| £ |wn(x)| (4.11)

 

Пример 4.5.

Оценим погрешность приближения функции f(x) =  в точке x = 116 и на всем отрезке [a, b], где a = 100, b = 144, с помощью интерполяционного много члена Лагранжа L2(x) второй степени, построенного с узлами x0 = 100, x2 = 144.

Найдем первую, вторую и третью производные функции f(x):

 

f '(x)= x– 1/2, f "(x)= – x–3/2,  f'''(x)= x–5/2.

M3 = | f'''(x)| = 100–5/2 = 10–5.

В соответствии с (4.9) получим оценку погрешности в точке x = 116:

| – L2(116)| £ |(116 – 100)(116 – 121)(116 – 144)| = 10–5×16×5×28 = 1.4×10 – 3.

Оценим погрешность приближения функции f(x) =  на всем отрезке в соответствии с (4.11):

| – L2(x)| £ |(x – 100)(x – 121)(x –144)| » 2.5×10–3.


Информация о работе «Вычислительная математика»
Раздел: Математика
Количество знаков с пробелами: 100779
Количество таблиц: 18
Количество изображений: 23

Похожие работы

Скачать
10356
0
0

... . Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции. Введем некоторые термины. Пусть имеется некоторая чис- ловая матрица. Привести строку этой матрицы означает выде-лить в строке минимальный элемент (его называют константой приведения) ...

Скачать
7721
1
1

... если  - предельная абсолютная погрешность приближённого числа , то  (1.2) отсюда следует, что  (1.3) Значение предельной абсолютной погрешности, обычно, подбирается интуитивно по смыслу задачи. Пример 2: Определить предельную абсолютную погрешность числа , заменяющего число , точное значение которого нам неизвестно. Так как мы знаем, что , ...

Скачать
37333
0
0

... удивили меня…, хоть речь идёт обо мне самой. Они действительно написаны прекрасным стилем, который превосходит стиль самого очерка" /2/. 2.3. Рождение первенца и критическое перенапряжение Августа Ада Лавлейс работает с большим напряжением. В письмах к Бэббиджу она неоднократно жалуется на утомление, болезни, плохое самочувствие. Наконец, 6 августа Бэббидж отсылает Аде свои последние замечания ...

Скачать
54819
0
0

... в Украине, бывшем Советском Союзе и за рубежом научная школа теоретического программирования. В 2001-м году ее не стало... Но не только в научном плане велика роль женщин в развитии вычислительной техники. Со временем образуется огромное количество различных фирм по разработке и продаже программного и аппаратного обеспечения. Следовательно, разыгрываются человеческие трагедии капиталистического ...

0 комментариев


Наверх