РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 

к курсовому проекту по технологии машиностроения

на тему: Расчет технологической детали ”Втулка”


Содержание

 

Задание

Введение

1. Служебное назначение и конструкция детали

2. Анализ технологичности конструкции детали

3. Определение типа производства

4. Выбор метода получения исходной заготовки

5. Экономическое обоснование выбора метода получения исходной заготовки

6. Расчет припусков на заготовку

7. Выбор и обоснование варианта маршрутного технологического процесса

8. Выбор металлорежущего оборудования и его технические характеристики

9. Аналитический анализ режимов резания

10. Описание операций и расчёт режимов резания

11. Нормирование технологического процесса

12. Определение фактического типа и организационной формы производства

13. Расчёт количества металлорежущих станков на программу

14. Расчёт производственных и вспомогательных рабочих

15. Описание и принцип работы контрольного приспособления

16. Технико-экономические показатели

17. Список используемой литературы

Приложение:

Комплект технологической документации


Введение

 

Развитию и формированию учебной дисциплины «технология машиностроения» как прикладной науки предшествовал непрерывный прогресс машиностроения на протяжении последних двух столетий. Степень прогресса определяла интенсивность изучения производственных процессов, а, следовательно, и научное их обобщение с установлением закономерностей в технологии механической обработки и сборки.

Машиностроительная промышленность является ведущей отраслью, так как это главный потребитель сырья и рабочей силы. От нее зависит материально техническая база и обороноспособность страны. Именно в машиностроении материализуются научно-технические идеи, создаются новые системы машин, определяющие прогресс в других отраслях.

Современный уровень технического прогресса, создание совершенных высокопроизводительных, автоматизированных и высокоточных машин, основанных на использовании новейших достижений науки, требует подготовки высокообразованных инженеров, обладающих глубокими знаниями и хорошо владеющих новой техникой и технологией производства.

Эффективность производства, его технический прогресс, качество выпускаемой продукции во многом зависят от опережающего развития нового оборудования, машин, станков и аппаратов, от внедрения методов технико-экономического анализа, обеспечивающего решение технических вопросов, экономическую эффективность технологических и конструкторских разработок.

Целью данного курсового проектирования является:

-  Расширение, систематизация и закрепление теоретических и практических знаний, полученных студентами во время лекционных, лабораторных, практических занятий, а также в период прохождения инженерной производственной подготовки на базовых предприятиях;

-  Практическое применение этих знаний для решения конкретных технических, организационных и экономических задач;

-  Развитие и закрепление навыков ведения самостоятельной работы;

-  Проведение поиска научно – технической информации и работа со справочной и методической литературой, стандартами и нормами;

-  Обучение студента краткому изложению сущности проделанной работы, аргументировано объяснять принятые решения при ответах на вопросы.

Курсовой проект является одним из основных этапов подготовки студентов к дипломному проектированию. Основной задачей курсового проекта является разработка технологического процесса механической обработки заготовки на стадии технического проекта для различных видов и типов производства с выполнением ряда технических расчетных работ и технико-экономическим обоснованием принятых решений.


1. Служебное назначение и конструкция детали

Деталь втулка представляет собой полое тело вращения типа «втулка с буртом». Служит как промежуточный элемент для базирования в корпусных деталях подшипниковых опор. Втулка входит в корпусную деталь и дополнительно крепится 4-мя болтами или штифтами через отверстия Ø14мм. Применение втулок в подшипниках скольжения сокращает расход дорогостоящего и обычно дефицитного антифрикционного материала (оловянистые бронзы и баббиты), а также упрощает ремонт, сводя его к замене изношенной втулки новой.

Масса детали составляет 4,65 кг. Габаритные размеры детали 140×128 мм. Из конструктивных особенностей можно отметить наличие: сквозного центрального отверстия Ø40мм по которому перемещается шток; 4-х сквозных отверстий Ø14мм параллельных оси детали; резьбового отверстия М16×2-7Н под , в которое устанавливается манометр для измерения давления; выточки Ø50мм в которую вставляется уплотнительное кольцо; 3-х лысок на фланце; канавки для выхода шлифовального круга.

Допуск на радиальное биение наружной цилиндрической поверхности Ø70d10 относительно базовой поверхности A составляет 0,1 мм. Так как больше специальных требований на чертеже нет, то точность геометрической формы поверхностей и точность взаимного расположения поверхностей детали в пределах допусков на размеры. Наиболее точными поверхностями детали являются: внутреннее цилиндрические поверхности Ø40H8(+0,039) с шероховатостью Ra=0,4 мкм, Ø50H11(+0,16) с шероховатостью Ra=3,2 мкм, наружные цилиндрические поверхности Æ70d10 с шероховатостью Ra=3,2 мкм, Æ128h12 с шероховатостью Ra=6,3 мкм. Остальные поверхности выполнены по 14-му квалитету с шероховатостью Ra=6,3 мкм.

Соответственно служебному назначению исполнительными поверхностями втулки являются основное отверстие Ø40H8 и соосная ему наружная цилиндрическая поверхность Æ70d10. Основной конструкторской базой втулки является ось основного отверстия. Основной технологической базой при обработке является основное отверстие, относительно которого обрабатывается точность расположения остальных поверхностей.

В качестве материала для изготовления детали втулка используется конструкционная легированная сталь 40Х ГОСТ 4543-88. Хромистая сталь имеет очень широкое применение. Хром оказывает положительное влияние и является недорогой примесью. Сталь 40Х применяют для изготовления осей, валов, вал-шестерен, плунжеров, штоков, коленчатых и кулачковых валов, колец, шпинделей, оправок, реек, зубчатых венцов, болтов, полуосей, втулок и других улучшаемых деталей повышенной прочности.

Вид поставки: сортовой прокат, в том числе фасонный: ГОСТ 4543-71, ГОСТ 2590-71, ГОСТ 2591-71, ГОСТ 2879-69, ГОСТ 10702-78. Калиброванный пруток ГОСТ 7414-75, ГОСТ 8559-75, ГОСТ 8560-78, ГОСТ 1051-73. Шлифованный пруток и серебрянка ГОСТ 14955-77. Лист толстый ГОСТ 1577-81, ГОСТ 19903-74. Полоса ГОСТ 82-70, ГОСТ 103-76, ГОСТ 1577-81. Поковки и кованые заготовки ГОСТ 8479-70. Трубы ГОСТ 8731-87, ГОСТ 8733-87, ГОСТ 13663-68.

Заменитель: стали 45Х, 38ХА, 40ХН, 40ХС, 40ХФ, 40ХР.

Таблица №1 Химический состав стали 40Х

Химический элемент %
Кремний (Si) 0.17-0.37
Медь (Cu), не более 0.30
Марганец (Mn) 0.50-0.80
Никель (Ni), не более 0.30
Фосфор (P), не более 0.035
Хром (Cr) 0.80-1.10
Сера (S), не более 0.035

Таблица №2 Механические свойства стали 40Х

Термообработка, состояние поставки Сечение, мм

0,2, МПа

B, МПа

5, %

, %

KCU, Дж/м2

HB
Пруток. Закалка 860 °С, масло. Отпуск 500 °С, вода или масло  25 780 980 10 45 59 -
Поковки. Нормализация. КП 245  500-800 245 470 15 30 34 143-179
Поковки. Нормализация. КП 275  300-500 275 530 15 32 29 156-197
Поковки. Закалка, отпуск. КП 275  500-800 275 530 13 30 29 156-197
Поковки. Нормализация. КП 315  <100 315 570 17 38 39 167-207
Поковки. Нормализация. КП 315  100-300 315 570 14 35 34 167-207
Поковки. Закалка, отпуск. КП 315  300-500 315 570 12 30 29 167-207
Поковки. Закалка, отпуск. КП 315  500-800 315 570 11 30 29 167-207
Поковки. Нормализация. КП 345  <100 345 590 18 45 59 174-217
Поковки. Нормализация. КП 345  100-300 345 590 17 40 54 174-217
Поковки. Закалка, отпуск. КП 345  300-500 345 590 14 38 49 174-217
Поковки. Закалка, отпуск. КП 395  <100 395 615 17 45 59 187-229
Поковки. Закалка, отпуск. КП 395  100-300 395 615 15 40 54 187-229
Поковки. Закалка, отпуск. КП 395  300-500 395 615 13 35 49 187-229
Поковки. Закалка, отпуск. КП 440  <100 440 635 16 45 59 197-235
Поковки. Закалка, отпуск. КП 440  100-300 440 635 14 40 54 197-235
Поковки. Закалка, отпуск. КП 490  <100 490 655 16 45 59 212-248
Поковки. Закалка, отпуск. КП 490  100-300 490 655 13 40 54 212-248

Таблица №3

Механические свойства стали 40Х при повышенных температурах

t испытания, °C

0,2, МПа

B, МПа

5, %

, %

KCU, Дж/м2

Закалка 830 °С, масло. Отпуск 550 °С

200 700 880 15 42 118
300 680 870 17 58
400 610 690 18 68 98
500 430 490 21 80 78

Образец диаметром 10 мм, длиной 50 мм кованый и отожженный. Скорость деформирования 5 мм/мин, скорость деформации 0,002 1/с.

700 140 175 33 78
800 54 98 59 98
900 41 69 65 100
1000 24 43 68 100
1100 11 26 68 100
1200 11 24 70 100

Таблица №4

Механические свойства в зависимости от температуры отпуска

t отпуска, °С

0,2, МПа

B, МПа

5, %

, %

KCU, Дж/м2

HB

Закалка 850 °С, вода

200 1560 1760 8 35 29 552
300 1390 1610 8 35 20 498
400 1180 1320 9 40 49 417
500 910 1150 11 49 69 326
600 720 860 14 60 147 265

Таблица №5 Механические свойства в зависимости от сечения

Сечение, мм

0,2, МПа

B, МПа

5, %

, %

KCU, Дж/м2

HB

Закалка 840-860 °С, вода, масло. Отпуск 580-650 °С, вода, воздух.

101-200 490 655 15 45 59 212-248
201-300 440 635 14 40 54 197-235
301-500 345 590 14 38 49 174-217

Таблица №6 Температура критических точек

Критическая точка °С
Ac1 743
Ac3 815
Ar3 730
Ar1 693
Mn 325

Таблица №7 Ударная вязкость, KCU, Дж/см2

Состояние поставки, термообработка +20 -25 -40 -70
Закалка 850 С, масло. Отпуск 650 С. 160 148 107 85
Закалка 850 С, масло. Отпуск 580 С. 91 82 - 54

Таблица №8 Предел выносливости

-1, МПа

-1, МПа

n

B, МПа

0,2, МПа

Термообработка, состояние стали
363 - 1Е+6 690 - -
470 - 1Е+6 940 - -
509 - 960 870 -
333 240 5Е+6 690 - -
372 - - - - Закалка 860 С, масло, отпуск 550 С.

Таблица №9 Физические свойства

Температура испытания, °С 20 100 200 300 400 500 600 700 800 900
Модуль нормальной упругости, Е, ГПа 214 211 206 203 185 176 164 143 132 -
Модуль упругости при сдвиге кручением G, ГПа 85 83 81 78 71 68 63 55 50 -
Плотность, pn, кг/см3 7850 7800 - - 7650 - - - -

Коэффициент теплопроводности

Вт/(м ·°С)

41 40 38 36 34 33 31 30 27 -
Уд. Электросопротив-ление (p, НОм · м) 278 324 405 555 717 880 1100 1330 - -
Температура испытания, °С 20- 100 20- 200 20- 300 20- 400 20- 500 20- 600 20- 700 20- 800 20- 900 20- 1000

Коэффициент линейного расширения

(a, 10-6 1/°С)

11.8 12.2 13.2 13.7 14.1 14.6 14.8 12.0 - -
Удельная теплоемкость (С, Дж/(кг · °С)) 466 508 529 563 592 622 634 664 - -

Технологические свойства:

— Температура ковки: начала 1250 °С, конца 800 °С. Сечения до 350 мм охлаждаются на воздухе.

— Свариваемость: трудносвариваемая. Способы сварки: РДС, ЭШС. Необходимы подогрев и последующая термообработка. КТС - необходима последующая термообработка.

— Обрабатываемость резанием: в горячекатаном состоянии при НВ 163-168, B = 610 МПа K тв.спл. = 0.20, K б.ст. = 0.95.

— Склонна к отпускной способности.

— Флокеночувствительна.

 


Информация о работе «Расчет технологической детали "Втулка"»
Раздел: Промышленность, производство
Количество знаков с пробелами: 68108
Количество таблиц: 15
Количество изображений: 7

Похожие работы

Скачать
164206
16
29

... ремонт оборудования. Защита от шума Борьба с шумом посредством уменьшения его в источнике является наиболее рациональной. Уменьшение механического шума может быть достигнуто путем совершенствования технологических процессов и оборудования. Расчет допустимого уровня шума Расчетная формула для определения уровня шума, если источник шума находится в помещении, будет иметь вид: , (4.1) где В ...

Скачать
104781
22
28

... Выбор и проектирование заготовки 2.1 Выбор способа получения заготовки Изначально определяем, что заготовку корпуса главного цилиндра гидротормозов можно получить двумя способами: литьем в земляные формы и литьем в металлические армированные формы. Второй способ практически не используется для изготовления отливок из чугуна. Эти методы в одинаковой степени позволяют достичь заданной точности ...

Скачать
41138
7
19

... 2(100+80+√0,842)=2∙180,84 = 361,68 7. Расчет промежуточных минимальных диаметров по переходам проводится в порядке, обратном ходу технологического процесса обработки этой поверхности, т.е. от размера готовой детали к размеру заготовки, путем последовательного прибавления к наименьшему предельному размеру готовой поверхности детали минимального припуска 2Zi min. Результаты заносятся ...

Скачать
9995
7
12

... данные: Nп = 100000 штук Коэффициент сложности KСЛ = 0,8 Коэффициент аналога KА = 0,6 Коэффициент роста производительности труда KР.ПР.ТР. = 3% Определение способов обработки При проектировании технологического процесса изготовления детали «Втулка» рассмотрим два различных технологических процесса: процесс изготовления детали резанием (на станках токарной группы) процесс изготовления детали ...

0 комментариев


Наверх