Разработка технологического маршрута и плана обработки. Выбор СТО

Технологический процесс изготовления корпуса главного цилиндра гидротормозов ВАЗ 2108
Классификация поверхностей детали Анализ базового варианта техпроцесса По таблице 2.1 [4] исходя их данных таблицы 2.3 получим допуски, которые и сведем в таблицу 2.1 Разработка технологического маршрута и плана обработки. Выбор СТО Научные исследования Анализ влияния качества поверхностного слоя на стойкость сверл Конструкция сверл Введение. Обоснование необходимости проведения патентных исследований Патентный поиск Проектирование технологических операций Нормирование операций Расчёт и конструирование режущего инструмента Расчёт сил резания Расчёт силового привода Расчёт точности контрольного приспособления Экономическое обоснование усовершенствования сверлильной операции Расчет необходимого количества оборудования и коэффициентов его загрузки Расчет технологической себестоимости изменяющихся по вариантам операций Калькуляция себестоимости обработки детали по вариантам технологического процесса, руб Расчет приведенных затрат и выбор оптимального варианта Безопасность и экологичность проекта
104781
знак
22
таблицы
28
изображений

4. Разработка технологического маршрута и плана обработки. Выбор СТО

4.1 Разработка технологического маршрута и плана обработки

Согласно базовому техпроцессу изготовления корпуса гидравлических тормозов обработка ведется на автоматической линии "Альфинг" и окончательную обработку проходит на специальном станке "Альфинг": последовательность обработки каждой поверхности приведена в таблице 4.1

Маршрут обработки поверхностей Таблица 4.1
№ поверхности Квалитет точности Шероховатость Технические требования Методы обработки Последовательность операций Последовательность позиций Трудоемкость

1

2

7

10

0,4

12,5

-

-

С,З,Р,Н

Т,ТЧ

10,20,40

10

610,810,320,

520, 720

3-510

3,6

2,2

3 9 10 -

Т,ТЧ

10

3-510

2,2
4 10 12,5 - Т 10

3-510

1
5 12 12,5 - Т 10

3-510

1
6 10 12,5 - Т 10

3-510

1
7 13-14 50 - - - - -
8 14 50 - - - - -
9 10 12,5 - Ф 10

310

1
10 10 12,5 - Т 10

910

1
11 8 12,5 -

С,З12

10

310,610, 910

2,8
12 8 12,5 -

З12

10

310,910

1,6
1 2 3 4 5 6 7 8
13 9 12,5 С,З 10

310,910

2
14 10 12,5 ^0,05/8,5 Т 10

3-510

1
15 9 12,5 С,З 10

310,910

2
16 6 5

Р3

10

9-1010

1,5
17 10 12,5 С 10

6-810

1
18 10 12,5 С 10

6-810

1
19 10 12,5 Ф 10

310

1
20 10 2,5 Т 10

610

1
21 10 12,5 ^0,05/7,5

Р3

10

10-1110

1,5
22 6 5 С,З 10

12-1310

2,0
23 10 12,5 С 10

6-1010

1
24 10 12,5 Т 10

3-510

1
25 10 12,5 Т 10

10-1110

1
26 6 5

Р3

10

12-1310

1
27 10 12,5 З 20

3ого

0,8
28 10 12,5 С 20

3ого

1
29 9 5 Ф,Фч 20 3,5 2,5
30 6 5 ^0,05/7,5

Р3

20

7ого

1,5
31 10 12,5 З,С 20 3 2,0
32 8 5 Ф,Фч 20 3-5 2,5

В таблице :

С – сверление;

З –зенкерование;

Р – развертывание;

Н – накатка;

Т – точение;

Тч – точение чистовое;

Ф – фрезерование;

Фч – фрезерование чистовое;

Р3 – резьбонарезание.

Как видно из таблицы наиболее трудоемкая по изготовлению отверстие поверхности 1, а также резьбовое отверстие.

В данном проекте предлагается изменить в базовом процессе последовательность обработки поверхности 1. В место маршрута обработки:

Зенкерование черновое

Зенкерование чистовое

Развертывание

Накатка

В качестве черновой операции использовать рассверливание. Для этого в заготовке необходимо увеличить припуск под черновую обработку на 1,5 мм на сторону. Это ведет к снижению трудоемкости, увеличению производительности за счет интенсификации процессов резания. При этом точность обработки не снижается, т.к. последующие переходы устраняют погрешность от черновой обработки. В следующих разделах эта особенность будет учитываться при размерном анализе (п.5). Назначение и патентные исследования также будет касаться черновой обработки отверстия. Оптимизация конструкции инструмента, методов и режимов обработки позволит получить существенный экономический эффект.

План обработки составляется с учетом требований по [5] с учетом базового техпроцесса. Последовательность обработки следующая:

005 Заготовительная

010 Линейно-автоматная

На данной операции происходит подготовка чистовых технологических баз, обработка черновая отверстия поверхности 1, а также плоскости поверхность 9 и отверстий поверхности 10, 15, 20.

020 Линейно-автоматная

Используя чистовые технологические базы, происходит обработка чистовая отверстия 1, а также плоскости поверхность 29, 32 и крепежных отверстий поверхности 27, 31, 26

040 Накатная

На данной операции происходит отделочная обработка отверстия поверхности 1.

Данная последовательность операций представлена в плане обработки с соответствующими операционными эскизами по операциям и позициям, а также техническими требованиями (см. лист 3).


4.2 Выбор СТО

Оборудование, оснастка (зажимные и контрольный приспособления, режущий инструмент, средства транспортировки детали с операции на операцию и т.д.) должны соответствовать всем требованиям, предъявляемым к детали на данной операции по производительности, точности, мощности и быть экономически обоснованы. Оборудование должно обеспечивать максимальную концентрацию переходов на операции и минимум переустановок.

В качестве оборудования в базовом техпроцессе на 010 , 020 операциях автоматическая линия "Альфинг" с автоматической разгрузкой на конвейер. На отделочной операции (накатной) специальный накатной станок "Альфинг".

В качестве оснастки применяются следующие приспособления и режущие инструменты:

010 операция :

основное приспособление (2 – х кулачковый патрон) спутник; автоматическое устройство для разгрузки деталей; транспортное устройство для спутников; гайковерты для зажима.

По позициям (в следующих порядке: 1 инструмент; 2 оснастка).

3  1. Фреза (резцовая головка) с шестигранными пластинами.

2. Оправка фрезы

4.  1 .Спиральное сверло Æ14 мм;

Комбинированное сверло Æ8,5/12;

Специальные резцы

2. Регулируемые втулки под сверла

5  1. Спиральное сверло Æ6 мм;

комбинированное сверло Æ8,5/12 мм;

Специальные резцы

2. Регулируемые втулки;

инструментальный патрон.

6  1. Спиральное сверло Æ3 мм;

Зенкер Æ14,2 мм;

Спиральное сверло Æ8,6 мм.

2. Регулируемая втулка.

7  1. Зенкер Æ 20 мм;

Спиральное сверло Æ3 мм;

Сверло для глубокого сверления Æ17,5 мм;

2. Регулируемая втулка; плавающий патрон.

8  1. Зенкер;

Специальное сверло для глубокого сверления Æ 17,5 мм;

2.  Плавающий патрон.

9  1. Зенкер

2. Регулируемая головка

10  1. Зенкер

Зенкер

Специальный резец

Профильный резец

2. Патрон для зенкера;

инструментальный патрон

11  1. Специальный резец (фасочный)

Специальный резец (для обточки)

Специальный резец (для подрезки торца)

Зенкер

2. Регулируемая втулка;

Инструментальный патрон.

12  1. Метчик М10х1,15

2. Плавающий птарон

13 1. Метчик М10х1,25

Метчик М22Х1,"5

2. Плавающий патрон.

020 операция:

Основное приспособление ;

Спутник;

Автоматическое приспособление для загрузки деталей.

3  1. Зенкер

Резцовая головка с шестигранной платиной.

2. Плавающий апатрон;

Оправка фрезы

4  1. Спиральное сверло Æ6 мм;

Ступенчатое сверло Æ8,5/12;

2. Регулируемые втулка

5  1. Зенкер для цекования

7-8 1. Развертка

10  Метчик

Все инструменты твердосплавные

040 операция

Ролик раскатной

Контрольно – измерительное приспособление:

010 операция

Пробка предельная для контроля размера:

1.  Æ17,5±0,2

2.  Æ8,5¸8,7

3.  Æ3,0¸3,2

4.  М10х1,25

5.  Æ8,78¸8,92

6.  Æ22¸0,05

7.  Æ14,2±0,1

8.  Æ6±0,1

Калибр с индикатором для контроля листа 90°+2°

Калибр жесткий предельный Æ25,5¸26,0;

Æ31,8¸32,0.

Скоба предельная с регулируемыми тарелками Æ31±0,3.

Пробка резьбовая М22х1,5.

Калибр с индикатором для контроля перпендикулярности и межосевого расстояния.

010 операция:

Пробка предельная Æ8,8±0,2

М8х1,25

Калибр с индикатором для контроля перпендикулярности и межосевого расстояния.

Специальный прибор "Солекс" для контроля Æ19,015¸19,035; стол с пневмоустановкой.

040 операция:

пробка предельная Æ19,035¸19,075

Специальный прибор "Солекс"; стол с пневмоустановкой.

Оборудование, приспособление, инструмент заносятся в маршрутную, операционные карты и в план обработки.


5. Размерный анализ техпроцесса

Задача раздела – используя размерный анализ технологического процесса провести расчет размерных параметров детали в процессе ее изготовления, при этом техпроцесс изготовления корпуса должен гарантировать изготовление качественных деталей и отсутствие брака при их производстве, содержать минимально необходимое число операций и переходов: обеспечить размеры заготовки с минимальными припусками.

Т.к. техпроцесс изготовления корпуса гидротормозов преимущественно содержит переходы, включающие обработку отверстий, расчет размерных цепей проводится только в радиальном направлении по методике, изложенной в [6].

Составляется размерная схема в радиальном направлении (см. лист графической части дипломного проекта).

Составляются уравнения операционных размерных цепей по операциям.

40 -

20 -

;

10 -


Записываем все уравнения размерных цепей в соответствующую графу размерной схемы. Осуществляем проверку для цепей имеющих замыкающими звеньями чертежные размеры детали.

В данном случае это будет уравнение несоосностей:

Из чертежа [Е1,26] = 0,2

Операционные несоосности:

Тогда

0,2>0,01+0,05+0,05 = 0,11

Данный техпроцесс обеспечивает все необходимые технические требования, т.к. все остальные операционные размеры на финишных операциях совпадают с чертежными и необходимая точность размеров автоматически обеспечивается при совпадении условия Топер £ Тчерт, где Топери Тчертдопуски на операционный и чертежный размеры соответственно.

Определим минимальные значения операционных припусков по формуле

 (5.1)

где Rzi1 – шероховатость поверхности на (i – 1)-ой операции; T i–1 – величина дефектного слоя на этой операции (только для заготовительной операции, т. к. обрабатывается чугун).

Шероховатость по операциям и величину дефектного слоя, полученные на операциях, определяем по таблице приложения 9 [7] в зависимости от метода обработки.

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм.

Для припуска z110 делается исключение, т. к. на черновой операции зенкерование заменяется более производительным рассверливанием. В дальнейшем z1min10 скорректируется с учетом данного замечания.

Полученные минимальные значения припусков заносятся в соответствующую графу размерной схемы.

Определим максимальные значения припусков по формуле

, (5.2)

где wzi – отклонение припуска, мм (поле рассеивания); которое находится по формуле

, (5.3)

где ТАi – отклонения составляющих звеньев, мм (равные операционным допускам).

;

 мм;

;

 = 0,2 – допуск на ход инструмента;

 мм;

;  мм;

;

 мм;

В данном случае  определяется отклонением настройки хода инструмента (мм);

 мм

;

 мм;

 – определяется погрешностью хода инструмента ();

;

 мм.

Определим максимальные припуски по переходам:

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм;

 мм.

Хотя размеры определяются в радиальном направлении, когда при числе звеньев больше 4 необходимо вести расчет вероятностным методом для припуска  расчет велся методом максимума-минимума, т. к. для данного припуска составляющие звенья уравнения цепи являются линейными размерами. Припуски заносятся в соответствующую графу размерной схемы.

Теперь определим операционные размеры из уравнений размерных цепей:

1. ;

 мм.

В операционной форме:

.

2.

 (т. к.  мм).


В операционной форме  мм.

3. . Т. к. число звеньев п>4, определим поле рассеяния вероятностным методом по формуле

 (5.3)

где – коэффициент риска, характеризующий вероятность попадания размеров замыкающего звена в регламентирующие размеры; для риска 0,01% коэффициент ;

– передаточный коэффициент (±1);

– коэффициент рассеивания, выбирается в зависимости от точности обработки;

– поле рассеивания замыкающего звена, мм.

 мм.

Тогда

 мм

Запись размера в операционной форме .

4.

Запись размера в операционной форме .

5.

Запись размера в операционной форме .

С учетом увеличенного припуска  мм.

6.

 мм

7.

8.

Запись в операционной форме

9.

Запись в операционной форме  мм.

10.

.

В результате размерного анализа получены операционные размеры (занесенные в соответствующую графу размерной схемы), позволяющие получить необходимую размерную точность и взаимное расположение поверхностей в ходе выполнения данного техпроцесса.

По сравнению с базовой заготовкой изменились два размера (Щ05 и 2А05).



Информация о работе «Технологический процесс изготовления корпуса главного цилиндра гидротормозов ВАЗ 2108»
Раздел: Промышленность, производство
Количество знаков с пробелами: 104781
Количество таблиц: 22
Количество изображений: 28

0 комментариев


Наверх