2.2. Виконання дії підведення під поняття.

Умін­ня застосовувати поняття є показником його засвоєння. На думку Н.О.Менчинської, якщо учень справді засвоїв поняття, то він уміє його і застосовувати.

Одним із провідних принципів педагогічної психології є принцип єдності знань і дій. Проте існують два роди знань: знання про пред­мети і явища навколишнього світу (а отже, і про поняття) і знання про дії, які з ними потрібно виконувати. Недоліком традиційного і сучасного навчання математики є недостатня увага до знань другого роду.

Часто учні, які добре знають означення математичних понять, не вміють застосовувати їх до доведення теорем і розв'язування за­дач, зокрема прикладних. Тому дії, адекватні знанням, зокрема по­няттям, мають стати не тільки засобом, а й предметом засвоєння.

З погляду застосування понять важливу роль відіграють такі розумо­ві дії, як «підведення до поняття» («дія розпізнавання») та обернена їй дія — відшукання наслідків. Остання означає, що від факту належності об'єкта до поняття приходять до системи властивостей, які має цей об'єкт. Потрібна спеціальна система вправ на підведення об'єктів до по­няття. Для встановлення факту належності об'єкта до певного поняття потрібно перевірити наявність у об'єкта сукупності необхідних і достат­ніх властивостей. Якщо виявиться, що об'єкт не має хоча б однієї з іс­тотних властивостей, роблять висновок, що до даного поняття він не на­лежить. При цьому можна використовувати не тільки означення, а й теореми, що виражають властивості понять, які еквівалентні означенням у тому розумінні, що властивості понять, які стверджуються в них, мо­жуть бути покладені в основу означень.

Наприклад, для встановленні належності чотирикутника до паралелограмів можна скористатися озна­ченням паралелограма і теоремою про його ознаку. Разом вони є еквіва­лентними системами необхідних і достатніх властивостей.

Перелік операцій, що входять до складу дії підведення до поняття у випадку, коли істотні властивості пов'язані сполучником «і» чи сполучником «або», можна задати у вигляді такого навчального алго­ритму. Щоб визначити, чи належить х до поняття у, потрібно:

1) виокремити властивості у;

2) з'ясувати, якими сполучниками пов'язані ці властивості;

3) якщо: а) сполучником «і», то перевірити, чи має х всі властивості у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у; б) сполучником «або», то перевірити, чи має х хоча б одну властивість у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у.

Якщо означення поняття має змішану структуру, тобто містить сполуч­ник «і» та сполучник «або», то в алгоритмі потрібні додаткові вказівки.

Наведемо приклад. У курсі геометрії 7 класу учні ознайомлюються з означенням медіани трикутника. Доцільно ще на етапі введення озна­чення чітко виділити дві істотні властивості, які воно містить і які лише разом утворююгь необхідну і достатню властивість належності об'єкта до поняття «медіана»: 1) медіана — це відрізок; 2) цей відрізок з'єднує вершину трикутника із серединою протилежної сторони.

Щоб встановити, чи є АВ медіаною трикутника АВС, потрібно: 1) пригадати означення медіани; 2) переконатися, що істотні власти­вості в ньому пов'язані сполучником «і»; 3) перевірити, чи має АО обидві властивості медіани.

2.3. Виконання дії виведення наслідків

 

Перелік операцій, що є складовими дії «відшукання наслідків», можна задати у вигляді такого навчального алгоритму: 1) назвати всі істотні властивості, які входять в означення поняття; 2) назвати інші істотні властивості, які вивчалися.

Наприклад, результати відшукання наслідків з поняття «рівнобедрений трикутник» можна сформулювати так. Якщо трикутник рівнобедрений, то: 1) дві сторони його рівні; 2) кути при основі рівні; 3) бісектриса кута при вершині є медіаною, проведеною до основи; 4) бісектриса кута при вершині є висотою, проведеною до основи; 5) пряма, що містить згадану бісектрису кута при вершині, є віссю симетрії цього трикутника.

З метою забезпечення передумов для формування умінь застосовувати поняття та їхні властивості до розв'язування задач і доведення теорем, доцільно після вивчення кожного з основних понять і відношень звести разом їхні істотні властивості, що містяться в означеннях і теоремах.

До таких понять слід віднести насамперед основні геометричні фі­гури та їхні властивості, відношення рівності, паралельності, перпен­дикулярності, основні види рівнянь, нерівностей, функцій. У міру вивчення курсу виникають нові можливості щодо доведення відно­шень рівності, паралельності й перпендикулярності відрізків, подіб­ності фігур. Тому важливо сформулювати правила-орієнтири для до­ведення цих відношень.

Наприклад, щоб довести рівність двох відріз­ків, можна включити їх у трикутники і довести рівність цих трикут­ників або скористатися властивістю одного з рухів, або застосувати вектори, або довести, що ці відрізки є бічними сторонами рівнобедреного трикутника чи протилежними сторонами паралелограма (прямо­кутника, квадрата, ромба).

Основою застосування понять до розв'язування складніших задач і доведення теорем є прийом розумової діяльності, який дістав назву «ана­ліз через синтез», або переосмислення елементів задачі з погляду різних понять. У процесі застосування понять в учнів формується така важлива розу­мова дія, як конкретизація, оскільки використання знань у практичних ситуаціях пов'язане з переходом від абстрактного до конкретного. Дослі­дження педагогічної психології показують, що перехід від оперування абс­трактними поняттями до конкретної практичної ситуації досить складний для школярів.

 З цього приводу Л. С. Виготський писав, що шлях від абс­трактного до конкретного виявляється тут не менш важким, ніж шлях сходження від конкретного до абстрактного. Багатьом учням складно одночасно виокремлювати абстрактні спів­відношення в конкретних даних і абстрагуватися від наочного сприй­мання об'єктів. Для запобігання таким труднощам потрібно викорис­товувати конкретні практичні ситуації ще в період формування абст­рактних понять — розв'язувати задачі практичного змісту. Особливо корисними є практичні роботи на місцевості, екскурсії на сільського­сподарські та промислові підприємства.

 


Информация о работе «Формування математичних понять в процесі викладання математики в основній школі»
Раздел: Математика
Количество знаков с пробелами: 104386
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
59323
2
1

... сприймали готові образи, що їх дає вчитель, а й самі відтворювали геометричні форми в процесі моделювання, креслення, вирізування, малювання. Тому центральне місце у формуванні геометричних понять займає практика самих школярів. Сприймання простору передбачає сприймання відстані, на якій предмети розміщені від нас і один від одного, напряму, в якому вони перебувають, величини та форми предметів. ...

Скачать
111999
3
53

... може бути компетентною або некомпетентною в певних питаннях, тобто мати компетентність (компетентності) у певній галузі діяльності. Саме тому, одним із результатів навчання курсу «Застосування ІКТ у навчальному процесі з математики» вбачається формування в майбутніх вчителів відповідних ключових фахових компетентностей. Зазначене вище наштовхнуло на дослідження компетентностей: внаслідок чого ...

Скачать
198737
17
8

... у фінансовій сфері. Таке означення показує, що ці задачі можуть використовуватися протягом всього учбового процесу. Останнім часом посилився пошук шляхів активізації пізнавальної діяльності учнів у процесі навчання математики за допомогою задач. Введення математичних задач фінансового змісту в шкільний курс ґрунтується на засадах та принципах процесу активізації пізнавальної діяльності учнів. ...

Скачать
77535
1
6

... . В ході нашого дослідження ми також виконали поставлені нами завдання. Вивчення психолого-педагогічних, а також і методичних аспектів використання комп’ютерних ігор у процесі навчання молодших школярів на уроках математики дало змогу проаналізувати шляхи такого використання, на основі чого створити свої. Підбір навчальних ігор для уроків математики в початковій школі дав змогу зробити певні на

0 комментариев


Наверх