3.1. Графический метод обработки результатов

Графический метод заключается в построении графика зависимости между исследуемыми величинами с последующим определением уравнения зависимости между ними.

Графики строят прежде всего в равномерных шкалах. Если характер связи между исследуемыми величинами неизвестен, то сначала проверяют совпадение экспериментальных точек с заданной кривой. Если предварительные сведения о характере уравнения отсутствуют, то первым этапом обработки данных является нахождение кривой, совпадающей с опытными точками. Эта задача решается методом подбора. Можно использовать эталон - кальку с предварительно вычерченным на ней семейством кривых с различными параметрами. Естественно, что масштаб кальки и эмпирической кривой должен быть одинаков.

Построенный по опытным данным отрезок кривой может совпадать с большим количеством различных кривых, проходящих достаточно близко к опытным точкам. В этом случае выбирают кривую с наиболее простым и удобным в использовании уравнением. Иногда эмпирическая кривая может иметь перегибы или состоять из отдельных ярко выраженных участков. Однако при этом необходимо определить координаты точек перехода от одной кривой к другой.

Уравнение зависимости между исследуемыми величинами при графическом методе просто определяется тогда, когда эмпирические точки достаточно хорошо совпадают с прямой линией, т.е. описываются уравнением y = ax + b, где a, b - коэффициенты, подлежащие определению.

Определение коэффициентов при графическом методе основано на ²способе натянутой нити². Нанеся результаты эксперимента на график (лучше, если он выполнен на миллиметровке), подбираем графическую прямую, ближе всего подходящую к нанесенным точкам. Выбрав положение прямой, определяем две произвольные точки на этой прямой (не обязательно являющиеся точками эксперимента), определяем их координаты (x1; y1), (х2; y2). И для определения коэффициентов а и b получаем два простых уравнения

ах1 + b = y1;

ах2 + b = y2.

На рис. 10 приведена иллюстрация этого метода. Точки - результаты, полученные в эксперименте. Прямая проведена на глаз как можно ближе к экспериментальным точкам. На прямой выбраны точки М (2; 4) и N (13; 10). Коэффициент а характеризует угол наклона прямой.

Поэтому

.

Таким образом y = 0,55х + 2,9.

Рис. 10. Графический метод интерполяции

В случае, если экспериментальная зависимость имеет нелинейный характер, то графическим способом в системе координат с равномерными шкалами определить коэффициенты кривой затруднительно. Но достаточно большой класс нелинейных зависимостей путем замены переменных и графического изображения в функциональных шкалах можно привести к линейным и далее использовать способ натянутой нити.

3.2. Функциональные шкалы и их применение

Пусть функция y = ¦(х) непрерывна и монотонна на некотором промежутке [ a; b ]. Возьмем ось ОМ, на которой будет строиться шкала, выберем на ней точку начала отсчета О и установим масштаб m. Функциональная шкала строится следующим образом.

Разбив интервал [ а; b ] на равные части, вычисляем значение функции ¦(х) в каждой из точек деления и отложим на оси ОМ для каждой точки отрезок m¦(х). Получающаяся при этом точка снабжается отметкой х, т.е. откладывается в выбранном масштабе значение функции, а надписывается значение аргумента.

Иногда начало шкалы помещают в первую точку отсчета, т.е. точку с надписью а совмещают с 0. Тогда точка х будет находиться в конце отрезка m [ ¦(х) - ¦(а) ]. Полученная шкала позволяет судить о поведении функции на рассматриваемом участке: большие промежутки между отметками укажут, что функция изменяется быстрее, чем там, где эти промежутки малы.

Выбор масштаба m определяет длину шкалы. Чаще поступают наоборот: задаются длиной шкалы l и определяют масштаб.

Þ m = .

Пример. Построим функциональную шкалу для функции y = x2 на участке [ 1; 2 ]. Зададимся длиной шкалы l = 12 см. Тогда m =  см. Разобьем отрезок [ 1; 2 ] на десять равных частей и вычислим значения функции во всех точках деления. Совместим начало шкалы с точкой отсчета х = 1. Результаты расчета сведены в табл. 2, а функциональная шкала приведена на рис. 11.

Таблица 2

Расчет функциональной шкалы y = x2

х 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

х2

1,0 1,21 1,44 1,69 1,96 2,25 2,56 2,89 3,24 3,61 4,00

х2-1

0 0,21 0,44 0,69 0,96 1,25 1,56 1,89 2,24 2,26 3,00

4(х2-1)

0 0,84 1,76 2,76 3,84 5,00 6,24 7,56 8,94 10,44 12,0

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

Рис. 11. Функциональная шкала y = x2

 

С помощью функциональных шкал графики многих функций могут быть преобразованы к прямолинейному виду.

Например, уравнение параболы y = x2. Если на оси OY нанести равномерную шкалу, а на оси OX1 шкалу квадратов х1 = х2, то получится сетка, где уравнение параболы имеет изображение прямой линии ( y = x1 ),

 проходящей через начало координат.

Особенно часто используются различные логарифмические функции, с помощью которых можно ²выпрямлять² графики степенных и показательных функций. Например, y = aebx; lg y = (b lg å) х + lg a. Полагая lg y = y1, lg a = A, b lg e = B запишем исходное уравнение в виде y1 = А + Вх, откуда видно, что оставив равномерной шкалу х и построив логарифмическую шкалу y1, можно изобразить исходное уравнение прямой линией. Полученная координатная сетка называется полулогарифмической.

Очевидно, что такого рода преобразования возможны и в более общем случае. Всякая неявная функция, заданная соотношением вида

аj(х) + by(y) + с = 0,

где a, b, с - постоянные, будет изображаться прямой линией на функциональной сетке, где на оси ОХ построена шкала j(х), а на оси OY - шкала функции y(y). Естественно, что функции j(х) и y(y) должны удовлетворять условиям непрерывности и монотонности. В табл. 3 приведены преобразования для некоторых функций.

Таблица 3

Линеаризация некоторых функций

Исходная

формула

Преобразованная

формула

Замена

переменных

Линеаризованная формула

y=axb

lg y=b×lgx+lga

lg y=y1

lg x=x1

lg a=a1

y1=bx1+a1

y=a×lgx+b ¾

lg x=x1

y=ax1+b

y=ebx+k

lg y=b×lge×x+k×lge

lg y=y1

b×lg e=a

k×lg e=k1

y1=ax+k1

y=aebx

lg y=bx×lge+lga

lg y=y1

b×lg e=b1

lg a=a1

y1=b1x+a1

y=

¾

y=ax1+b

y=

y1=ax+b

y=

y1=bx1+a

Из сказанного ясна роль функциональных сеток при обработке результатов эксперимента. Если результаты эксперимента располагаются вблизи кривой, то по имеющемуся ограниченному участку кривой трудно судить, какого типа функцией ее лучше всего приближать. Переведя полученные экспериментальные данные на функциональные сетки можно оценить на какой из них эти данные ближе всего подходят к прямой и, следовательно, какой функцией лучше всего описываются.


Информация о работе «Обработка результатов экспериментов и наблюдений»
Раздел: Математика
Количество знаков с пробелами: 87319
Количество таблиц: 11
Количество изображений: 16

Похожие работы

Скачать
83728
10
12

... Как видно, с ростом числа измерений различие между результатами, вычислениями по распределению Стьюдента и по нормальному распределению уменьшается. Контрольные вопросы Цель математической обработки результатов эксперимента; Виды измерений; Типы ошибок измерения; Свойства случайных ошибок; Почему среднеарифметическое значение случайной величины при нормальном законе ее распределения является ...

Скачать
18346
1
0

... распределения случайной величины. а) коэффициент асимметрии; б) момент случайной величины; в) коэффициент эксцесса; г) математическое ожидание. Ответ: в). Тема 9. МЕТОДЫ ВТОРИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ПЕДАГОГИЧЕСКОГО ЭКСПЕРИМЕНТА   Тестовое задание 1. Выберите верные ответы. В зависимости от используемых источников информации исследования делятся на: а) кабинетные; б) ...

Скачать
66194
0
0

... , казалось бы, характеризуется чисто эмпирическими признаками: изменением управляемых условий, включением и выключением приборов и различных механизмов, фиксированием тех или иных свойств, эффектов и т. п. В ходе эксперимента как бы уменьшается роль теории. Но на самом деле наоборот - без теоретического знания невозможны постановка промежуточных задач и их решение. Экспериментальная установка - ...

Скачать
38195
29
2

... свободы остается на проверку гипотезы адекватности. Если заранее пренебречь взаимодействиями высших порядков, то имеется возможность получить математическую модель при меньшем числу опытов, реализовав не весь план ДФЭ, а только его часть (дробную реплику). Эксперимент, реализующий часть (дробную реплику) полного факторного эксперимента, называется дробным факторным экспериментом (ДФЭ). ДФЭ ...

0 комментариев


Наверх