1.2. Траектории автономных систем.

Будем рассматривать автономную систему в векторной форме: (2)

где функция f(x) определена в .

Автономные системы обладают тем свойством, что если  — решение уравнения (2), то , , также решение уравнения (2). Отсюда в частности следует, что решение  можно записать в виде . В геометрической интерпретации эта запись означает, что если две траектории уравнения (2) имеют общую точку, то они совпадают. При этом можно заметить, что траектория вполне определяется начальной точкой , поэтому можно везде считать .

Пусть  — положение равновесия, т. е. . Для того чтобы точка  была положением равновесия, необходимо и достаточно, чтобы . Предположим теперь, что траектория решения  не является положением равновесия, но имеет кратную точку, т. е. существуют , такие, что . Так как  — не положение равновесия, то . Поэтому можно считать, что  при . Обозначим  и покажем, что  — -периодическая функция.

Действительно, функция  является решением уравнения (2) при , причем . В силу единственности  и  совпадают при всех . Применяя аналогичное рассуждение к решению , получим, что  определено при  и функции  и  совпадают при этих t. Таким образом, можно продолжить  на все , при этом должно выполняться тождество

,

то есть  — периодическая функция с наименьшим периодом.

Траектория такого решения является замкнутой кривой. Из приведенного вытекает следующий результат: Каждая траектория автономного уравнения (2) принадлежит одному из следующих трех типов:

положение равновесия;

замкнутая траектория, которой соответствует периодическое решение с положительным наименьшим периодом;

траектория без самопересечения, которой соответствует непериодическое решение.

1.3. Предельные множества траекторий.

Определение. Точка  называется -предельной точкой траектории , , если существует последовательность  такая, что  при . Множество  всех -предельных точек траектории называется ее -предельным множеством. Аналогично для траектории  при  определяется понятие -предельной точки как предела , а также -предельного множества.

Определение. Траектория  называется положительно (отрицательно) устойчивой по Лагранжу (обозн.  ()), если существует компакт  такой, что  при всех  (), при которых  определена. Иными словами, если траектория всегда остается в некоторой ограниченной области фазового пространства.

Можно показать, что предельное множество устойчивой по Лагранжу траектории не пусто, компактно и связно.

Траектория  называется устойчивой по Пуассону, если каждая ее точка является -предельной и -предельной, т. е. . Примером устойчивой по Пуассону траектории является состояние равновесия. Если же рассматривается траектория, отличная от неподвижной точки, то устойчивой по Пуассону она будет в том случае, если обладает свойством возвращаться в сколь угодно малую окрестность каждой своей точки бесконечное число раз. Поэтому устойчивыми по Пуассону будут циклы и квазипериодические траектории (суперпозиция двух периодических колебаний с несоизмеримыми частотами), а также более сложные траектории, возникающие в хаотических системах.

Рассмотрим (без доказательств) некоторые свойства предельных множеств в случае n = 2.


Информация о работе «Устойчивость систем дифференциальных уравнений»
Раздел: Математика
Количество знаков с пробелами: 43854
Количество таблиц: 0
Количество изображений: 18

Похожие работы

Скачать
39446
2
12

... пакетах.   Заключение   Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...

Скачать
10895
2
6

... в векторно-матричной форме записи имеет следующий вид: . В таблице приведены результаты вычисления переходных процессов для векторно-матричного неоднородного дифференциального уравнения по формуле аналитического решения и трем рекуррентным выражениям, использующим различные квадратурные формулы интегрирования. Для заполнения таблицы с шагом 0.1 по третьей рекуррентной формуле второе ...

Скачать
31319
15
25

... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...

Скачать
32343
0
0

... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...

0 комментариев


Наверх