1.2. Траектории автономных систем.
Будем рассматривать автономную систему в векторной форме: (2)
где функция f(x) определена в .
Автономные системы обладают тем свойством, что если — решение уравнения (2), то
,
, также решение уравнения (2). Отсюда в частности следует, что решение
можно записать в виде
. В геометрической интерпретации эта запись означает, что если две траектории уравнения (2) имеют общую точку, то они совпадают. При этом можно заметить, что траектория вполне определяется начальной точкой
, поэтому можно везде считать
.
Пусть — положение равновесия, т. е.
. Для того чтобы точка
была положением равновесия, необходимо и достаточно, чтобы
. Предположим теперь, что траектория решения
не является положением равновесия, но имеет кратную точку, т. е. существуют
, такие, что
. Так как
— не положение равновесия, то
. Поэтому можно считать, что
при
. Обозначим
и покажем, что
— -периодическая функция.
Действительно, функция является решением уравнения (2) при
, причем
. В силу единственности
и
совпадают при всех
. Применяя аналогичное рассуждение к решению
, получим, что
определено при
и функции
и
совпадают при этих t. Таким образом, можно продолжить
на все
, при этом должно выполняться тождество
,
то есть — периодическая функция с наименьшим периодом.
Траектория такого решения является замкнутой кривой. Из приведенного вытекает следующий результат: Каждая траектория автономного уравнения (2) принадлежит одному из следующих трех типов:
положение равновесия;
замкнутая траектория, которой соответствует периодическое решение с положительным наименьшим периодом;
траектория без самопересечения, которой соответствует непериодическое решение.
1.3. Предельные множества траекторий.
Определение. Точка называется -предельной точкой траектории
,
, если существует последовательность
такая, что
при
. Множество всех -предельных точек траектории называется ее -предельным множеством. Аналогично для траектории
при
определяется понятие -предельной точки как предела
, а также -предельного множества.
Определение. Траектория называется положительно (отрицательно) устойчивой по Лагранжу (обозн.
(
)), если существует компакт
такой, что
при всех
(
), при которых
определена. Иными словами, если траектория всегда остается в некоторой ограниченной области фазового пространства.
Можно показать, что предельное множество устойчивой по Лагранжу траектории не пусто, компактно и связно.
Траектория называется устойчивой по Пуассону, если каждая ее точка является -предельной и -предельной, т. е.
. Примером устойчивой по Пуассону траектории является состояние равновесия. Если же рассматривается траектория, отличная от неподвижной точки, то устойчивой по Пуассону она будет в том случае, если обладает свойством возвращаться в сколь угодно малую окрестность каждой своей точки бесконечное число раз. Поэтому устойчивыми по Пуассону будут циклы и квазипериодические траектории (суперпозиция двух периодических колебаний с несоизмеримыми частотами), а также более сложные траектории, возникающие в хаотических системах.
Рассмотрим (без доказательств) некоторые свойства предельных множеств в случае n = 2.
... пакетах. Заключение Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...
... в векторно-матричной форме записи имеет следующий вид: . В таблице приведены результаты вычисления переходных процессов для векторно-матричного неоднородного дифференциального уравнения по формуле аналитического решения и трем рекуррентным выражениям, использующим различные квадратурные формулы интегрирования. Для заполнения таблицы с шагом 0.1 по третьей рекуррентной формуле второе ...
... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...
... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...
0 комментариев