2.3. Устойчивость периодических решений.
Рассмотрим уравнение (3) с периодическими коэффициентами, т. е. , (4)
где . По формуле (5) предыдущей главы уравнение (4) имеет в рассматриваемом случае фундаментальную матрицу
, где
— неособая -периодическая непрерывная матрица, тем самым ограниченная вместе с обратной,
— жорданова матрица, собственные числа
которой — характеристические показатели уравнения (4). Из леммы 1 следует, что характеристические показатели играют при оценке фундаментальной матрицы ту же роль, что собственные числа
, когда
постоянна. Учитывая, что
, где
— мультипликаторы уравнения, получаем следующий результат:
Теорема 3. Линейная однородная система с периодическими коэффициентами: 1) устойчива по Ляпунову тогда и только тогда, когда все ее мультипликаторы не превышают по модулю единицы, а равные единице по модулю либо простые, либо им соответствуют простые элементарные делители матрицы монодромии; 2) асимптотически устойчива тогда и только тогда, когда модули всех мультипликаторов меньше единицы.
Пример. Рассмотрим уравнение из примера п. 1.5:
Уравнение будем называть устойчивым по Ляпунову, асимптотически устойчивым или неустойчивым, если таковой является соответствующая ему линейная система. Мультипликаторы находятся из уравнения :
, где
. Поэтому можно сделать вывод, что при
оба мультипликатора вещественны и один из них по абсолютной величине больше единицы, а при
мультипликаторы являются комплексно-сопряженными с модулями, равными единице. По теореме 3 при
уравнение
неустойчиво, а при
оно устойчиво по Ляпунову, но не асимптотически.
2.4. Классификация положений равновесия системы второго порядка.
Исследуем на устойчивость положения равновесия линейной однородной системы двух уравнений с постоянными коэффициентами. Пусть , где
. Как было показано в пункте 1.4, тип особой точки такой системы определяется корнями характеристического уравнения
или
. Его корни можно найти по формуле
.
Рассмотрим следующие случаи согласно пункту 1.4.
1) вещественны, различны и
(
). Параметрические уравнения траекторий:
. Положение равновесия называется узел. Если корни
положительны (
), то решения будут неограниченно возрастать, и особая точка — неустойчивый узел.
Если отрицательны (
), то решения с ростом времени будут неограниченно уменьшаться, то есть положение равновесия будет асимптотически устойчивым. Особая точка — устойчивый узел.
2) вещественны и
(
). В этом случае одна из траекторий всегда будет неограниченно возрастать, а другая неограниченно уменьшаться. Таким образом, седло всегда неустойчиво.
3) комплексно-сопряженные, но не чисто мнимые (
). Решение в полярных координатах запишется в виде
, где
. Если
(
), то спирали будут раскручиваться от особой точки, и фокус будет неустойчивым.
Если (
), то особая точка — устойчивый фокус, причем устойчивость асимптотическая.
4) (
). Особая точка — центр, траектории — окружности, то есть положение равновесия является устойчивым, но не асимптотически.
5) . Если
, то получаем неустойчивый узел, либо вырожденный, либо дикритический. Если
, положение равновесия будет асимптотически устойчивым.
6) Один из корней равен нулю (например ). Траекториями являются прямые, параллельные друг другу. Если
, то получаем прямую неустойчивых особых точек. Если
, то прямая будет содержать устойчивые особые точки.
7) Оба корня равны нулю. Тогда . Особая точка неустойчива.
Пример. Рассмотрим систему . Положение равновесия находится из уравнения
, или
, откуда
. Следовательно, положение равновесия — неустойчивый узел. Жорданова форма матрицы А имеет вид:
.
Найдем координаты преобразования , приводящего матрицу А к жордановой форме, то есть переводящего систему к виду
. Дифференцируя эти уравнения и подставляя в исходную систему, получаем:
откуда с учетом
, — произвольное,
, — произвольное. Получаем преобразование
. Определим новое положение осей:
Решение системы запишется в виде
, а исходной системы отсюда
. Схематическое изображение траекторий:
Рассмотрим теперь некоторые положения равновесия в трехмерном пространстве. Характеристическое уравнение — кубическое с вещественными коэффициентами, оно может иметь три вещественных или один вещественный и два комплексно-сопряженных корня. В зависимости от расположения этих корней на плоскости
возможно 10 "грубых" случаев (рис. 3, 1)-5) и 1')-5')) и ряд "вырожденных" (рис. 3, 6)-9)), когда вещественная часть одного из корней равна нулю или вещественной части не сопряженного с ним корня. Случаи кратных корней здесь не рассматриваются.
Поведение фазовых траекторий в приведенных случаях показано на рис. 4. Случаи 1')-5') получаются из случаев 1)-5) изменением направления оси t, так что на рис. 4 надо лишь заменить все стрелки на противоположные.
Устойчивость по Ляпунову в рассмотренных случаях следующая. Все случаи 1')-5'), а также 2), 5), 8) и 9) неустойчивы. Случаи 1), 3) и 4) устойчивы асимптотически. Случай 6) устойчив.
Рис. 3. Собственные числа матрицы А. Закрашенным кружком отмечены ,
светлым — начало координат.
Рис. 4. Фазовые кривые в трехмерном пространстве.
... пакетах. Заключение Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...
... в векторно-матричной форме записи имеет следующий вид: . В таблице приведены результаты вычисления переходных процессов для векторно-матричного неоднородного дифференциального уравнения по формуле аналитического решения и трем рекуррентным выражениям, использующим различные квадратурные формулы интегрирования. Для заполнения таблицы с шагом 0.1 по третьей рекуррентной формуле второе ...
... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...
... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...
0 комментариев