3.2. Теоремы второго метода Ляпунова.

Теорема 1. Пусть существует определенно-положительная функция Ляпунова , такая, что DV есть отрицательная функция. Тогда решение  уравнения (1) устойчиво по Ляпунову.

Доказательство. Пусть  — произвольная положительная постоянная, . Положим  при . Так как V определенно-положительная, то . По l найдем  такое, чтобы . Рассмотрим решение  при . Покажем, что

. (5)

Пусть (5) не имеет места. Тогда существует  такое, что , а при . В силу (3) и условия теоремы функция  является при  невозрастающей функцией t. Так как , то , тогда тем более , что противоречит определению T и тому, что . Таким образом, импликация (5) имеет место, а это и означает по определению устойчивость решения  по Ляпунову. Теорема доказана.

Следствие. Если уравнение (1) имеет в области G определенно-положительный интеграл, не зависящий от t и уничтожающийся в начале координат, то решение  устойчиво по Ляпунову.

Теорема 2. Пусть существует определенно-положительная функция Ляпунова , такая, что DV определенно-отрицательная при . Тогда решение  уравнения (1) асимптотически устойчиво.

Доказательство. Условия теоремы 1 выполнены, и решение  устойчиво по Ляпунову. Следовательно, существует  такое, что

 при . (6)

Из определения асимптотической устойчивости в силу (4) заключаем, что достаточно доказать импликацию  при . В силу (3) и условия теоремы  — строго убывающая функция t.

Предположим, что теорема неверна. Тогда

. (7)

Отсюда, из (6) и (4) следует, что при  . По условию теоремы , где  — определенно-положительная функция. Пусть . Из (3) следует, что при всех  , что противоречит определенной положительности . Полученное противоречие доказывает теорему.

В случае когда уравнение автономно, условия теоремы (2) можно ослабить.

Теорема 3. Пусть уравнение (1) автономно, выполнены условия теоремы 1 и множество  не содержит целиком полных траекторий уравнения (1), за исключением положения равновесия . Тогда решение  асимптотически устойчиво.

Доказательство. Используем доказательство теоремы 2 до формулы (7) включительно. Далее, пусть  — -предельная точка траектории . Из определения -предельной точки и (7) следует, что . По первому свойству предельных множеств (п. 1.3.) все точки траектории  являются -предельными для траектории . Следовательно, для всех t, при которых определено решение , . Отсюда и из (3) следует, что при указанных t , что противоречит условию теоремы, так как  не совпадает с началом координат. Теорема доказана.

Пример. Рассмотрим уравнение движения диссипативной системы с одной степенью свободы , где  удовлетворяют условию Липшица при ,  удовлетворяет условию  при  и  при . Докажем, что положение равновесия  асимптотически устойчиво.

Соответствующая система двух уравнений имеет вид

.

В качестве функции Ляпунова возьмем полную энергию системы .

В силу условия  V —определенно-положительная функция, при этом

.

Следовательно, DV —отрицательная функция и множество M — интервал оси абсцисс при . Так как при  при , то множество M не содержит целых траекторий, отличных от положения равновесия .

По теореме 3 решение  системы асимптотически устойчиво, что и требовалось доказать.

Перейдем к рассмотрению неустойчивости. Пусть  — функция Ляпунова. Обозначим через  любую связную компоненту открытого множества  с началом координат на ее границе.

Теорема 4. Пусть существует функция Ляпунова  такая, что  не пусто и при . Тогда решение  уравнения (1) неустойчиво.

Доказательство. Пусть . Будем рассматривать решения  с начальной точкой . Достаточно показать, что для каждого из этих решений можно указать момент T (для каждого решения свой) такой, что .

Пусть это неверно, т. е. существует решение , удовлетворяющее при всех  неравенству . Покажем, что траектория решения  принадлежит  при . Действительно, по определению  она может покинуть область  только через ту часть ее границы, где . Но это невозможно, так как  и при возрастании  функция  строго возрастает, пока , в силу (3).

Итак, доказано, что при   и . Следовательно, по условию теоремы  при . Интегрируя (3) от  до , получаем

,

что противоречит ограниченности  при . Противоречие доказывает теорему.

Пример. Рассмотрим уравнение , где  — удовлетворяющая условию Липшица при  функция такая, что  при . Докажем неустойчивость решения .

Рассмотрим систему , соответствующую уравнению примера. В качестве функции Ляпунова возьмем . Имеем:

.

По теореме 4 решение  системы неустойчиво, что и требовалось доказать.


Информация о работе «Устойчивость систем дифференциальных уравнений»
Раздел: Математика
Количество знаков с пробелами: 43854
Количество таблиц: 0
Количество изображений: 18

Похожие работы

Скачать
39446
2
12

... пакетах.   Заключение   Результатом выполнения курсового проекта является готовый программный продукт, позволяющий решать задачу Коши для системы дифференциальных уравнений при помощи неявной схемы Адамса 3-го порядка, демонстрирующий возможности численного решения поставленной задачи с заданной степенью точности. Готовый программный продукт может найти широкое применение при решении многих ...

Скачать
10895
2
6

... в векторно-матричной форме записи имеет следующий вид: . В таблице приведены результаты вычисления переходных процессов для векторно-матричного неоднородного дифференциального уравнения по формуле аналитического решения и трем рекуррентным выражениям, использующим различные квадратурные формулы интегрирования. Для заполнения таблицы с шагом 0.1 по третьей рекуррентной формуле второе ...

Скачать
31319
15
25

... при финансовой поддержке государственной научно-технической программы «Физика квантовых и волновых процессов» (проект 1.61) и физического учебно-научного центра «Фундаментальная оптика и спектроскопия». 1. Асимптотическое поведение решений дифференциальных уравнений с малым параметром Многие колебательные системы описываются дифференциальными уравнениями с малым параметром при производных: ...

Скачать
32343
0
0

... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...

0 комментариев


Наверх