2. Классификация элементов симметрии молекулы
1. Поворотная ось Cn порядка n. Поворотной осью симметрии n-го порядка называется ось Cn, при повороте вокруг которой на угол a=2p/n молекула совмещается сама с собой. Примеры: C3 – для случая молекулы аммиака; C2 (рис. 2, а) – для случая молекулы воды; C6 – для случая молекулы бензола (рис. 2, б).
2. Поворотная ось бесконечного порядка C¥. Это поворотная ось, при повороте вокруг которой на любой угол молекула совмещается с собой. Примером может служить любая линейная молекула, например, молекула ацетилена C2H2 (рис. 3).
Рис. 2
Рис. 3
3. Плоскость симметрии. Плоскостью симметрии молекулы называется плоскость, при отражении в которой молекула совмещается сама с собой. Пример молекулы с вертикальной плоскостью симметрии уже приведен (молекула аммиака). У бензола C
6H
6 (рис. 2, б) есть плоскость симметрии
- плоскость, в которой лежат атомы этой молекулы. При этом следует иметь ввиду, что поворотная ось высшего порядка всегда условно принимается за вертикальную.
Диагональную плоскость симметрии имеет молекула метана (рис. 4). Геометрической моделью CH4 является тетраэдр, в вершине которого расположены атомы водорода. Диагональная плоскость симметрии sd заштрихована. При отражении в плоскости sd атомы водорода, находящиеся в плоскости, переходят в себя, а атомы, расположенные симметрично этой плоскости, переходят друг в друга.
4. Центр симметрии. Это точка i, при отражении в которой молекула совмещается сама с собой, например, молекула трансдихлорэтилена C2Cl2H2 (рис. 5).
Рис. 5
5. Зеркально-поворотная ось n-го порядка Sn. Зеркально-поворотной осью n-го порядка называется ось, при повороте вокруг которой на угол a=2p/n с последующим
отражением в плоскости, перпендикулярной к этой оси, молекула совмещается сама с собой.
Примером молекул, обладающих такой осью, может служить молекула метана CH
4.
Рис. 6
На рис. 6 показана зеркально-поворотная ось симметрии четвертого порядка S
4. Из рис. 6 можно видеть, что при повороте на угол a=2p/4 вокруг оси S
4 против часовой стрелки атомы H
(i) переходят в места, указанные звездочками. Совершив затем отра-
жение в заштрихованной горизонтальной плоскости, получим, что все звездочки перейдут в соответствующие атомы, т. е. в результате зеркального поворота S
4 атом H
(1) перейдет в H
(3), H
(2) – в H
(4), H
(3) – в H
(2), H
(4) – в H
(1).
Раздел:
Химия Количество знаков с пробелами: 74215
Количество таблиц: 5
Количество изображений: 9
... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...
... : правый рукав соответствует левому, правая штанина — левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например расчесывая волосы на косой пробор — слева или справа. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или надев ...
... требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля. Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - ...
... ), и ее вклад в теплоемкость равен 1. Вращательная теплоемкость многоатомных газов. Свободную энергию многоатомного газа, как и двухатомного, можно представить в виде суммы трех частей — поступательной, вращательной и колебательной. Поступательная часть характеризуется теплоемкостью и химической постоянной, равными: Благодаря большой величине моментов инерции многоатомных молекул (и ...
0 комментариев